Normalized defining polynomial
\( x^{16} + 584 x^{14} + 139284 x^{12} + 17392688 x^{10} + 1211607937 x^{8} + 46480731696 x^{6} + 912726990288 x^{4} + 7803495656064 x^{2} + 18734319395856 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(225387523315734662028879718967317456742252544=2^{48}\cdot 3^{8}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $591.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3504=2^{4}\cdot 3\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3504}(1,·)$, $\chi_{3504}(265,·)$, $\chi_{3504}(971,·)$, $\chi_{3504}(145,·)$, $\chi_{3504}(83,·)$, $\chi_{3504}(3421,·)$, $\chi_{3504}(3359,·)$, $\chi_{3504}(2533,·)$, $\chi_{3504}(3239,·)$, $\chi_{3504}(3503,·)$, $\chi_{3504}(1523,·)$, $\chi_{3504}(2869,·)$, $\chi_{3504}(119,·)$, $\chi_{3504}(3385,·)$, $\chi_{3504}(635,·)$, $\chi_{3504}(1981,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{657} a^{8} + \frac{1}{3} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{657} a^{9} + \frac{2}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{1314} a^{10} + \frac{1}{9} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{3942} a^{11} + \frac{1}{1971} a^{9} + \frac{4}{27} a^{5} + \frac{7}{54} a^{3} + \frac{1}{3} a$, $\frac{1}{70956} a^{12} + \frac{13}{35478} a^{10} + \frac{1}{1971} a^{8} + \frac{29}{243} a^{6} - \frac{431}{972} a^{4} - \frac{23}{54} a^{2}$, $\frac{1}{25969896} a^{13} + \frac{749}{6492474} a^{11} - \frac{88}{360693} a^{9} + \frac{5644}{44469} a^{7} + \frac{42121}{355752} a^{5} + \frac{2591}{9882} a^{3} + \frac{19}{122} a$, $\frac{1}{132950987181659799515575224} a^{14} + \frac{2555446453391324497}{910623199874382188462844} a^{12} + \frac{192198454318489653737}{1846541488634163882160767} a^{10} + \frac{7571047365364697295103}{16618873397707474939446903} a^{8} - \frac{252960459343507227225671}{1821246399748764376925688} a^{6} - \frac{38216737915913032287119}{101180355541598020940316} a^{4} + \frac{20108862900987962837}{624570095935790252718} a^{2} + \frac{147125676757907966}{1706475671955711073}$, $\frac{1}{2393117769269876391280354032} a^{15} + \frac{8803249786975646027}{598279442317469097820088508} a^{13} - \frac{294766772971074481}{3732062294567140116651} a^{11} - \frac{26831209585711041568678}{149569860579367274455022127} a^{9} - \frac{2153209856801133203986967}{32782435195477758784662384} a^{7} - \frac{15339617436442328238839}{910623199874382188462844} a^{5} - \frac{19644854590672559580581}{101180355541598020940316} a^{3} + \frac{42029797924141836569}{936855143903685379077} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{2313224}$, which has order $1184370688$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 148350354.74649996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $73$ | 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |