Normalized defining polynomial
\( x^{16} + 584 x^{14} + 126144 x^{12} + 12925088 x^{10} + 701820613 x^{8} + 20830421520 x^{6} + 325634279004 x^{4} + 2354400118368 x^{2} + 5650252604676 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(225387523315734662028879718967317456742252544=2^{48}\cdot 3^{8}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $591.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3504=2^{4}\cdot 3\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3504}(1,·)$, $\chi_{3504}(1607,·)$, $\chi_{3504}(265,·)$, $\chi_{3504}(3275,·)$, $\chi_{3504}(1871,·)$, $\chi_{3504}(145,·)$, $\chi_{3504}(2387,·)$, $\chi_{3504}(1751,·)$, $\chi_{3504}(1487,·)$, $\chi_{3504}(3421,·)$, $\chi_{3504}(2723,·)$, $\chi_{3504}(2533,·)$, $\chi_{3504}(1835,·)$, $\chi_{3504}(2869,·)$, $\chi_{3504}(3385,·)$, $\chi_{3504}(1981,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{657} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{657} a^{9} - \frac{1}{9} a^{3}$, $\frac{1}{12483} a^{10} - \frac{1}{12483} a^{8} - \frac{7}{57} a^{6} - \frac{58}{171} a^{4} + \frac{61}{171} a^{2} + \frac{2}{19}$, $\frac{1}{37449} a^{11} - \frac{1}{37449} a^{9} + \frac{4}{57} a^{7} - \frac{1}{513} a^{5} + \frac{118}{513} a^{3} - \frac{17}{57} a$, $\frac{1}{898776} a^{12} - \frac{7}{224694} a^{10} + \frac{5}{49932} a^{8} - \frac{143}{1539} a^{6} + \frac{1513}{12312} a^{4} + \frac{5}{38} a^{2} + \frac{35}{76}$, $\frac{1}{180653976} a^{13} - \frac{115}{45163494} a^{11} - \frac{7115}{10036332} a^{9} + \frac{991}{309339} a^{7} + \frac{186625}{2474712} a^{5} - \frac{1903}{68742} a^{3} + \frac{1997}{5092} a$, $\frac{1}{50393131392263653965828888} a^{14} - \frac{1955438513606030030}{6299141424032956745728611} a^{12} - \frac{3544734554610316399}{311068712297923789912524} a^{10} - \frac{1748097534558913832762}{6299141424032956745728611} a^{8} + \frac{85772878287356674560313}{690316868387173341997656} a^{6} + \frac{2503951094138346173069}{9587734283155185305523} a^{4} + \frac{72593381305084504121}{224274486155676849252} a^{2} + \frac{281845907690518851}{588890994604458283}$, $\frac{1}{907076365060745771384919984} a^{15} - \frac{7414429431958204}{2983803832436663721660921} a^{13} + \frac{174339557167716789379}{16797710464087884655276296} a^{11} + \frac{21577285870729074298585}{113384545632593221423114998} a^{9} + \frac{1463561341729877607483025}{12425703630969120155957808} a^{7} - \frac{20540903237877802383571}{172579217096793335499414} a^{5} + \frac{4164666660749945419175}{76701874265241482444184} a^{3} + \frac{304774756564292299985}{710202539492976689298} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{34}\times C_{68}\times C_{9928}$, which has order $1469026304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 259264854.2777166 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $73$ | 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |