Properties

Label 16.0.22502537891...0000.9
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 11^{8}$
Root discriminant $38.42$
Ramified primes $2, 3, 5, 11$
Class number $256$ (GRH)
Class group $[2, 4, 4, 8]$ (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![139681, -133920, 199323, -151166, 131167, -80626, 52626, -27518, 14535, -6508, 2868, -1078, 392, -126, 38, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 38*x^14 - 126*x^13 + 392*x^12 - 1078*x^11 + 2868*x^10 - 6508*x^9 + 14535*x^8 - 27518*x^7 + 52626*x^6 - 80626*x^5 + 131167*x^4 - 151166*x^3 + 199323*x^2 - 133920*x + 139681)
 
gp: K = bnfinit(x^16 - 8*x^15 + 38*x^14 - 126*x^13 + 392*x^12 - 1078*x^11 + 2868*x^10 - 6508*x^9 + 14535*x^8 - 27518*x^7 + 52626*x^6 - 80626*x^5 + 131167*x^4 - 151166*x^3 + 199323*x^2 - 133920*x + 139681, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 38 x^{14} - 126 x^{13} + 392 x^{12} - 1078 x^{11} + 2868 x^{10} - 6508 x^{9} + 14535 x^{8} - 27518 x^{7} + 52626 x^{6} - 80626 x^{5} + 131167 x^{4} - 151166 x^{3} + 199323 x^{2} - 133920 x + 139681 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(22502537891856000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.42$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(660=2^{2}\cdot 3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(131,·)$, $\chi_{660}(197,·)$, $\chi_{660}(463,·)$, $\chi_{660}(593,·)$, $\chi_{660}(67,·)$, $\chi_{660}(529,·)$, $\chi_{660}(353,·)$, $\chi_{660}(419,·)$, $\chi_{660}(659,·)$, $\chi_{660}(551,·)$, $\chi_{660}(617,·)$, $\chi_{660}(43,·)$, $\chi_{660}(109,·)$, $\chi_{660}(241,·)$, $\chi_{660}(307,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{63396858157669} a^{14} - \frac{7}{63396858157669} a^{13} - \frac{14413803240103}{63396858157669} a^{12} + \frac{23085961283040}{63396858157669} a^{11} + \frac{5804567862393}{63396858157669} a^{10} + \frac{2377138531066}{63396858157669} a^{9} + \frac{9188758787082}{63396858157669} a^{8} + \frac{12737133305995}{63396858157669} a^{7} - \frac{1660448777708}{63396858157669} a^{6} - \frac{4614036627378}{63396858157669} a^{5} - \frac{27378723557140}{63396858157669} a^{4} + \frac{19901575564915}{63396858157669} a^{3} - \frac{3220263847495}{63396858157669} a^{2} - \frac{21807859284661}{63396858157669} a - \frac{12309323836118}{63396858157669}$, $\frac{1}{5382456654444255769} a^{15} + \frac{42443}{5382456654444255769} a^{14} + \frac{505131751996769339}{5382456654444255769} a^{13} + \frac{6494441537202320}{23504177530324261} a^{12} + \frac{1885628979815212058}{5382456654444255769} a^{11} + \frac{433300220745922128}{5382456654444255769} a^{10} - \frac{1893800025670358634}{5382456654444255769} a^{9} - \frac{1805547840929613582}{5382456654444255769} a^{8} + \frac{518564144893683561}{5382456654444255769} a^{7} + \frac{367201244070214798}{5382456654444255769} a^{6} - \frac{18071276310919208}{91228078888885691} a^{5} - \frac{1106544471962594703}{5382456654444255769} a^{4} - \frac{87051755592782376}{5382456654444255769} a^{3} - \frac{599075294729327428}{5382456654444255769} a^{2} + \frac{1781797082240032084}{5382456654444255769} a + \frac{1958378453440851877}{5382456654444255769}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{4}\times C_{8}$, which has order $256$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3121.7160225 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_4$ (as 16T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{3}, \sqrt{-11})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-55})\), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{-33})\), \(\Q(\sqrt{15}, \sqrt{-33})\), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), 4.0.242000.2, 4.0.136125.2, 8.0.189747360000.6, \(\Q(\zeta_{60})^+\), 8.0.4743684000000.5, 8.0.58564000000.1, 8.0.18530015625.1, 8.0.4743684000000.6, 8.0.4743684000000.7

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$