Normalized defining polynomial
\( x^{16} - x^{15} + 409 x^{14} - 409 x^{13} + 68953 x^{12} - 68953 x^{11} + 6179161 x^{10} - 6179161 x^{9} + 316389721 x^{8} - 316389721 x^{7} + 9250453849 x^{6} - 9250453849 x^{5} + 145697978713 x^{4} - 145697978713 x^{3} + 1081338149209 x^{2} - 1081338149209 x + 2952618490201 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22434050585222044572730141713145073=17^{15}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1649=17\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1649}(1,·)$, $\chi_{1649}(195,·)$, $\chi_{1649}(389,·)$, $\chi_{1649}(775,·)$, $\chi_{1649}(1163,·)$, $\chi_{1649}(1165,·)$, $\chi_{1649}(1357,·)$, $\chi_{1649}(193,·)$, $\chi_{1649}(1262,·)$, $\chi_{1649}(1359,·)$, $\chi_{1649}(581,·)$, $\chi_{1649}(96,·)$, $\chi_{1649}(98,·)$, $\chi_{1649}(872,·)$, $\chi_{1649}(1066,·)$, $\chi_{1649}(971,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{319166878249} a^{9} - \frac{136629353176}{319166878249} a^{8} + \frac{216}{319166878249} a^{7} - \frac{61151793374}{319166878249} a^{6} + \frac{15552}{319166878249} a^{5} - \frac{158271941701}{319166878249} a^{4} + \frac{414720}{319166878249} a^{3} + \frac{89014126181}{319166878249} a^{2} + \frac{2985984}{319166878249} a - \frac{52124499706}{319166878249}$, $\frac{1}{319166878249} a^{10} + \frac{240}{319166878249} a^{8} + \frac{87435693734}{319166878249} a^{7} + \frac{20160}{319166878249} a^{6} + \frac{7520147858}{319166878249} a^{5} + \frac{691200}{319166878249} a^{4} + \frac{41800218935}{319166878249} a^{3} + \frac{8294400}{319166878249} a^{2} - \frac{136731129278}{319166878249} a + \frac{15925248}{319166878249}$, $\frac{1}{319166878249} a^{11} + \frac{4291996327}{319166878249} a^{8} - \frac{31680}{319166878249} a^{7} + \frac{2274158164}{319166878249} a^{6} - \frac{3041280}{319166878249} a^{5} + \frac{46207715544}{319166878249} a^{4} - \frac{91238400}{319166878249} a^{3} - \frac{115940570035}{319166878249} a^{2} - \frac{700710912}{319166878249} a + \frac{62371677729}{319166878249}$, $\frac{1}{319166878249} a^{12} - \frac{38016}{319166878249} a^{8} + \frac{32703586279}{319166878249} a^{7} - \frac{4257792}{319166878249} a^{6} + \frac{2958392081}{319166878249} a^{5} - \frac{164229120}{319166878249} a^{4} - \frac{98977308802}{319166878249} a^{3} - \frac{2102132736}{319166878249} a^{2} + \frac{56840407307}{319166878249} a - \frac{4204265472}{319166878249}$, $\frac{1}{319166878249} a^{13} + \frac{52989871689}{319166878249} a^{8} + \frac{3953664}{319166878249} a^{7} + \frac{67922651813}{319166878249} a^{6} + \frac{426995712}{319166878249} a^{5} - \frac{31124263870}{319166878249} a^{4} + \frac{13663862784}{319166878249} a^{3} - \frac{108548769944}{319166878249} a^{2} + \frac{109310902272}{319166878249} a + \frac{142166224745}{319166878249}$, $\frac{1}{319166878249} a^{14} + \frac{5031936}{319166878249} a^{8} + \frac{112117983953}{319166878249} a^{7} + \frac{634023936}{319166878249} a^{6} - \frac{40729132280}{319166878249} a^{5} + \frac{26085556224}{319166878249} a^{4} - \frac{151900675378}{319166878249} a^{3} + \frac{28640538071}{319166878249} a^{2} - \frac{106134118730}{319166878249} a + \frac{77155785646}{319166878249}$, $\frac{1}{319166878249} a^{15} - \frac{77743836733}{319166878249} a^{8} - \frac{452874240}{319166878249} a^{7} - \frac{109174583606}{319166878249} a^{6} - \frac{52171112448}{319166878249} a^{5} - \frac{109458337701}{319166878249} a^{4} - \frac{143202690355}{319166878249} a^{3} - \frac{121075118779}{319166878249} a^{2} + \frac{52718678325}{319166878249} a - \frac{44823000147}{319166878249}$
Class group and class number
$C_{17}\times C_{17}\times C_{20162}$, which has order $5826818$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 97 | Data not computed | ||||||