Normalized defining polynomial
\( x^{16} - 6 x^{15} + 114 x^{14} - 436 x^{13} + 4479 x^{12} - 10309 x^{11} + 80393 x^{10} - 82748 x^{9} + 763006 x^{8} + 192135 x^{7} + 5523873 x^{6} + 5112247 x^{5} + 40963734 x^{4} + 18571065 x^{3} + 207616495 x^{2} + 13494377 x + 431724841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22368513682624478383882080078125=5^{12}\cdot 13^{6}\cdot 29^{7}\cdot 1049^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{5}{19} a^{12} + \frac{4}{19} a^{11} + \frac{7}{19} a^{10} - \frac{7}{19} a^{9} + \frac{5}{19} a^{8} + \frac{9}{19} a^{7} + \frac{7}{19} a^{6} + \frac{4}{19} a^{5} + \frac{3}{19} a^{4} - \frac{9}{19} a^{3} + \frac{9}{19} a^{2} - \frac{7}{19} a + \frac{2}{19}$, $\frac{1}{779} a^{14} - \frac{11}{779} a^{13} + \frac{91}{779} a^{12} - \frac{74}{779} a^{11} + \frac{293}{779} a^{10} + \frac{66}{779} a^{9} + \frac{55}{779} a^{8} + \frac{143}{779} a^{7} - \frac{9}{41} a^{6} - \frac{40}{779} a^{5} - \frac{8}{779} a^{4} + \frac{329}{779} a^{3} - \frac{346}{779} a^{2} + \frac{291}{779} a - \frac{12}{779}$, $\frac{1}{226247998505190003599749141854901461379035831355212251} a^{15} + \frac{77018414513879691394854949408798657846706033217446}{226247998505190003599749141854901461379035831355212251} a^{14} + \frac{2973929394398514196926370283195815138563786506834551}{226247998505190003599749141854901461379035831355212251} a^{13} - \frac{65395049074378441793704151842983329240758055946061888}{226247998505190003599749141854901461379035831355212251} a^{12} + \frac{30836400228961370392282812095856435564165043338318885}{226247998505190003599749141854901461379035831355212251} a^{11} + \frac{106253643517060858541899243967387028168036034525835292}{226247998505190003599749141854901461379035831355212251} a^{10} + \frac{10361215211169006114084287565607171373129795175143178}{226247998505190003599749141854901461379035831355212251} a^{9} + \frac{13784523674227145084983114854513008707979330041462839}{226247998505190003599749141854901461379035831355212251} a^{8} + \frac{23726208219942550886267729711190891733967073814237465}{226247998505190003599749141854901461379035831355212251} a^{7} - \frac{3290830942354312123414166891076112959784519679159768}{226247998505190003599749141854901461379035831355212251} a^{6} - \frac{1106208105776654820013091070655548271104937163368016}{11907789395010000189460481150257971651528201650274329} a^{5} - \frac{77465224311523200137264174064140008415994873824342794}{226247998505190003599749141854901461379035831355212251} a^{4} + \frac{85480690878158943915228169925179585404339739750465438}{226247998505190003599749141854901461379035831355212251} a^{3} - \frac{12228706917523831778137000123603354840046191307178}{134591313804396194883848388967817645079735771180971} a^{2} + \frac{10063358587979342842868447625433757514219289227209620}{226247998505190003599749141854901461379035831355212251} a + \frac{12740274976849544590164854100087030445818541803526938}{226247998505190003599749141854901461379035831355212251}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6448}$, which has order $103168$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10968.6213178 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 94 conjugacy class representatives for t16n1558 are not computed |
| Character table for t16n1558 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.2576088125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.0.1 | $x^{8} + x^{2} - 3 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 29.8.7.3 | $x^{8} + 58$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 1049 | Data not computed | ||||||