Normalized defining polynomial
\( x^{16} - 79 x^{14} + 2940 x^{12} - 61956 x^{10} + 777889 x^{8} - 6088896 x^{6} + 32389280 x^{4} - 113326664 x^{2} + 197009296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2229454910146816000000000000=2^{20}\cdot 5^{12}\cdot 11^{4}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{11} a^{8} - \frac{1}{11} a^{6} + \frac{2}{11} a^{4} - \frac{2}{11} a^{2}$, $\frac{1}{11} a^{9} - \frac{1}{11} a^{7} + \frac{2}{11} a^{5} - \frac{2}{11} a^{3}$, $\frac{1}{22} a^{10} - \frac{1}{22} a^{8} + \frac{1}{11} a^{6} - \frac{1}{11} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{22} a^{11} - \frac{1}{22} a^{9} + \frac{1}{11} a^{7} - \frac{1}{11} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{484} a^{12} + \frac{9}{484} a^{10} - \frac{2}{121} a^{8} + \frac{32}{121} a^{6} + \frac{13}{484} a^{4} + \frac{5}{11} a^{2}$, $\frac{1}{484} a^{13} + \frac{9}{484} a^{11} - \frac{2}{121} a^{9} + \frac{32}{121} a^{7} + \frac{13}{484} a^{5} + \frac{5}{11} a^{3}$, $\frac{1}{479049551782455894739048} a^{14} + \frac{11473068556090094633}{479049551782455894739048} a^{12} + \frac{1024495785748407615609}{59881193972806986842381} a^{10} - \frac{1641821972425074718691}{59881193972806986842381} a^{8} - \frac{144528153031091838130175}{479049551782455894739048} a^{6} - \frac{2217986790958418893813}{5443744906618816985671} a^{4} + \frac{476241374420048468831}{989771801203421270122} a^{2} + \frac{730110668061288368}{1551366459566491019}$, $\frac{1}{479049551782455894739048} a^{15} + \frac{11473068556090094633}{479049551782455894739048} a^{13} + \frac{1024495785748407615609}{59881193972806986842381} a^{11} - \frac{1641821972425074718691}{59881193972806986842381} a^{9} - \frac{144528153031091838130175}{479049551782455894739048} a^{7} - \frac{2217986790958418893813}{5443744906618816985671} a^{5} + \frac{476241374420048468831}{989771801203421270122} a^{3} + \frac{730110668061288368}{1551366459566491019} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1130420807884223}{15453211347821157894808} a^{14} + \frac{86195971412214649}{15453211347821157894808} a^{12} - \frac{779515291892782295}{3863302836955289473702} a^{10} + \frac{15780225892044628463}{3863302836955289473702} a^{8} - \frac{752355711174331246231}{15453211347821157894808} a^{6} + \frac{61967616775622678974}{175604674407058612441} a^{4} - \frac{27560223353599799739}{15964061309732601131} a^{2} + \frac{247802539841185442}{50044079340854549} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15103860.135 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T646):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.3625.1, 4.4.725.1, 8.0.13140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.4 | $x^{8} + 2 x^{6} + 16$ | $2$ | $4$ | $12$ | $C_2^3: C_4$ | $[2, 2, 3]^{4}$ |
| 2.8.8.3 | $x^{8} + 2 x^{7} + 2 x^{6} + 16$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |