Normalized defining polynomial
\( x^{16} + 194 x^{14} + 3183 x^{12} - 109236 x^{10} - 2269931 x^{8} - 11265729 x^{6} + 426352493 x^{4} + 8629333501 x^{2} + 41151773881 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22245513193027862267173879060120840909081=61^{14}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $332.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} + \frac{3}{10} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{10} a^{9} + \frac{3}{10} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a$, $\frac{1}{10} a^{10} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a + \frac{3}{10}$, $\frac{1}{10} a^{11} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{2} + \frac{3}{10} a$, $\frac{1}{650} a^{12} - \frac{16}{325} a^{10} + \frac{1}{25} a^{8} - \frac{1}{2} a^{7} - \frac{142}{325} a^{6} - \frac{103}{325} a^{4} - \frac{1}{2} a^{3} - \frac{177}{650} a^{2} + \frac{22}{325}$, $\frac{1}{650} a^{13} - \frac{16}{325} a^{11} + \frac{1}{25} a^{9} - \frac{142}{325} a^{7} - \frac{1}{2} a^{6} - \frac{103}{325} a^{5} + \frac{74}{325} a^{3} - \frac{1}{2} a^{2} - \frac{281}{650} a - \frac{1}{2}$, $\frac{1}{722079426190502241832234598750} a^{14} + \frac{347169231078600075956337141}{722079426190502241832234598750} a^{12} + \frac{4208873784956052564147165267}{144415885238100448366446919750} a^{10} - \frac{4066558374557804884649062808}{361039713095251120916117299375} a^{8} + \frac{33599490189669563713714724796}{361039713095251120916117299375} a^{6} - \frac{1}{2} a^{5} + \frac{18656610490454268545886873027}{72207942619050224183223459875} a^{4} - \frac{15775561459499961695403836221}{361039713095251120916117299375} a^{2} - \frac{200197734610111487885953943823}{722079426190502241832234598750}$, $\frac{1}{146480310317579094275845278467826250} a^{15} - \frac{9529608503961727594666367224317}{73240155158789547137922639233913125} a^{13} + \frac{698233684884642381376576267380677}{29296062063515818855169055693565250} a^{11} - \frac{3620394776769362317993015769659508}{73240155158789547137922639233913125} a^{9} + \frac{23839229239250467328242841690621721}{73240155158789547137922639233913125} a^{7} + \frac{359906597476396478685691400352667}{14648031031757909427584527846782625} a^{5} + \frac{10186460891719047204344482027780929}{73240155158789547137922639233913125} a^{3} - \frac{1}{2} a^{2} + \frac{23101785237821262851892733704073226}{73240155158789547137922639233913125} a - \frac{1}{2}$
Class group and class number
$C_{3}\times C_{18}$, which has order $54$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 432906818173 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |