Normalized defining polynomial
\( x^{16} + 24 x^{14} + 324 x^{12} + 3584 x^{10} - 3928 x^{8} - 244528 x^{6} + 926840 x^{4} - 1008032 x^{2} + 611524 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22168695080663051109329457381376=2^{50}\cdot 13^{8}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{8} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{40} a^{10} + \frac{1}{20} a^{6} + \frac{1}{10} a^{4} + \frac{1}{20} a^{2} - \frac{1}{5}$, $\frac{1}{40} a^{11} + \frac{1}{20} a^{7} + \frac{1}{10} a^{5} + \frac{1}{20} a^{3} - \frac{1}{5} a$, $\frac{1}{44200} a^{12} + \frac{483}{44200} a^{10} - \frac{543}{44200} a^{8} + \frac{77}{340} a^{6} + \frac{3591}{11050} a^{4} + \frac{237}{1300} a^{2} + \frac{499}{1300}$, $\frac{1}{44200} a^{13} + \frac{483}{44200} a^{11} - \frac{543}{44200} a^{9} + \frac{77}{340} a^{7} + \frac{3591}{11050} a^{5} + \frac{237}{1300} a^{3} + \frac{499}{1300} a$, $\frac{1}{1610945950874000} a^{14} - \frac{1541856477}{805472975437000} a^{12} + \frac{1184817958959}{402736487718500} a^{10} - \frac{13526412655137}{805472975437000} a^{8} + \frac{386194253196147}{805472975437000} a^{6} - \frac{1816147834782}{20136824385925} a^{4} + \frac{1897973119503}{4738076326100} a^{2} - \frac{1740622781369}{23690381630500}$, $\frac{1}{37051756870102000} a^{15} - \frac{46329354451}{9262939217525500} a^{13} - \frac{22824696813104}{2315734804381375} a^{11} + \frac{130348907188486}{2315734804381375} a^{9} - \frac{6446111809040053}{18525878435051000} a^{7} - \frac{117400797607419}{926293921752550} a^{5} - \frac{27769674030077}{108975755500300} a^{3} - \frac{107704820858997}{272439388750750} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69448144.2299 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n869 |
| Character table for t16n869 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}) \), 4.0.735488.5, 4.0.735488.4, \(\Q(\sqrt{2}, \sqrt{13})\), 8.0.540942598144.29 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |