Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} + 8 x^{13} + 7 x^{12} - 58 x^{11} + 214 x^{10} - 116 x^{9} - 296 x^{8} + 886 x^{7} - 268 x^{6} - 990 x^{5} + 1316 x^{4} + 480 x^{3} - 1170 x^{2} + 405 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(221533456000000000000=2^{16}\cdot 5^{12}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{30} a^{12} + \frac{1}{30} a^{11} - \frac{7}{30} a^{10} - \frac{1}{6} a^{9} - \frac{2}{15} a^{8} + \frac{1}{3} a^{7} + \frac{1}{15} a^{6} + \frac{2}{5} a^{5} + \frac{11}{30} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{30} a^{13} + \frac{1}{15} a^{11} + \frac{7}{30} a^{10} - \frac{2}{15} a^{9} + \frac{2}{15} a^{8} - \frac{13}{30} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} + \frac{2}{15} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{18450} a^{14} - \frac{139}{9225} a^{13} + \frac{104}{9225} a^{12} - \frac{614}{9225} a^{11} - \frac{107}{18450} a^{10} + \frac{31}{450} a^{9} + \frac{1193}{9225} a^{8} - \frac{3431}{18450} a^{7} - \frac{2429}{18450} a^{6} - \frac{3583}{9225} a^{5} - \frac{6631}{18450} a^{4} + \frac{59}{123} a^{3} - \frac{559}{1845} a^{2} + \frac{223}{1230} a - \frac{92}{205}$, $\frac{1}{3805580449350} a^{15} - \frac{1079983}{76111608987} a^{14} - \frac{10233301558}{1902790224675} a^{13} + \frac{57609138461}{3805580449350} a^{12} + \frac{23167414922}{1902790224675} a^{11} + \frac{51912157304}{380558044935} a^{10} - \frac{53727221308}{1902790224675} a^{9} - \frac{419675290084}{1902790224675} a^{8} - \frac{545159984176}{1902790224675} a^{7} - \frac{1254325642973}{3805580449350} a^{6} + \frac{1901113460891}{3805580449350} a^{5} - \frac{177121044371}{1268526816450} a^{4} - \frac{266720238383}{761116089870} a^{3} + \frac{8884663763}{50741072658} a^{2} + \frac{10781266883}{28189484810} a - \frac{9075292379}{28189484810}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{14474275553}{761116089870} a^{15} - \frac{219343330697}{3805580449350} a^{14} + \frac{259900509893}{1902790224675} a^{13} + \frac{40242851429}{3805580449350} a^{12} + \frac{469222733161}{3805580449350} a^{11} - \frac{4643840476231}{3805580449350} a^{10} + \frac{10157410750829}{1902790224675} a^{9} - \frac{29576288846207}{3805580449350} a^{8} + \frac{9326673711997}{3805580449350} a^{7} + \frac{54487819505773}{3805580449350} a^{6} - \frac{77744889706663}{3805580449350} a^{5} + \frac{1653192370457}{634263408225} a^{4} + \frac{1660303014034}{76111608987} a^{3} - \frac{3653524372193}{253705363290} a^{2} - \frac{294901600411}{42284227215} a + \frac{91058151138}{14094742405} \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29399.1026781 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), \(\Q(i, \sqrt{5})\), \(\Q(\zeta_{20})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61 | Data not computed | ||||||