Normalized defining polynomial
\( x^{16} - 32 x^{14} - 24 x^{13} + 528 x^{12} + 696 x^{11} - 4340 x^{10} - 8976 x^{9} + 20776 x^{8} + 65760 x^{7} - 11160 x^{6} - 191712 x^{5} + 39996 x^{4} + 850104 x^{3} + 1807452 x^{2} + 1890576 x + 1377009 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22144295318673432094540038144=2^{48}\cdot 3^{12}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5}$, $\frac{1}{28977325491} a^{14} + \frac{630825893}{9659108497} a^{13} - \frac{808754470}{28977325491} a^{12} - \frac{2224212499}{9659108497} a^{11} + \frac{309255262}{28977325491} a^{10} + \frac{2753437559}{9659108497} a^{9} - \frac{227534638}{1259883717} a^{8} + \frac{2227491032}{9659108497} a^{7} + \frac{2012211509}{28977325491} a^{6} + \frac{391602657}{9659108497} a^{5} + \frac{429674876}{1259883717} a^{4} - \frac{3459708764}{9659108497} a^{3} + \frac{1449190320}{9659108497} a^{2} - \frac{1560940578}{9659108497} a + \frac{2126013471}{9659108497}$, $\frac{1}{3546282449623792190438960086114653} a^{15} - \frac{35445654927098724742595}{3546282449623792190438960086114653} a^{14} + \frac{170228537111504862929661206946622}{3546282449623792190438960086114653} a^{13} + \frac{53241585274898694909047116441772}{322389313602162926403541826010423} a^{12} - \frac{53254462517771133543098961437273}{107463104534054308801180608670141} a^{11} - \frac{204753303963383621555884619450935}{1182094149874597396812986695371551} a^{10} + \frac{502773713211026098137071710134415}{3546282449623792190438960086114653} a^{9} - \frac{771570633547256819313095082844532}{3546282449623792190438960086114653} a^{8} + \frac{1534246715619917735580026110780942}{3546282449623792190438960086114653} a^{7} + \frac{35925785723092955190279141477794}{322389313602162926403541826010423} a^{6} + \frac{475164052328543320810482539456715}{1182094149874597396812986695371551} a^{5} + \frac{115294702891750668869691636325840}{1182094149874597396812986695371551} a^{4} + \frac{144895358557628862227045511047629}{1182094149874597396812986695371551} a^{3} - \frac{447679619259919041834523799681624}{1182094149874597396812986695371551} a^{2} - \frac{5185700149889489265064126841749}{1182094149874597396812986695371551} a - \frac{377046843013254862436815777571760}{1182094149874597396812986695371551}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{8}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 475824.014517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4.D_4$ |
| Character table for $C_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), 4.0.105984.1, 4.0.105984.2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.0.404373897216.34, 8.0.179721732096.5, 8.8.1617495588864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |