Normalized defining polynomial
\( x^{16} - 2 x^{15} - 33 x^{14} + 109 x^{13} + 524 x^{12} + 741 x^{11} + 6344 x^{10} + 2417 x^{9} + 111358 x^{8} + 286175 x^{7} + 545230 x^{6} + 26325565 x^{5} + 51478827 x^{4} - 236712984 x^{3} + 90662379 x^{2} + 3769753589 x + 5616899611 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(221385427428590205586181640625=5^{12}\cdot 41^{6}\cdot 661^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{75765118594025939044622205507882449240821643195196205777552441} a^{15} + \frac{18267700540643413159315358233805268849812646809817464666819533}{75765118594025939044622205507882449240821643195196205777552441} a^{14} + \frac{30740937293000272375178730624256551096512679324986036277387794}{75765118594025939044622205507882449240821643195196205777552441} a^{13} + \frac{13331077203612127775026697514301498290077467073022261770157802}{75765118594025939044622205507882449240821643195196205777552441} a^{12} + \frac{35579702124764052166161673013235647478778719088336111460191615}{75765118594025939044622205507882449240821643195196205777552441} a^{11} - \frac{33106035801279910325020723356037564573389362823976416592851370}{75765118594025939044622205507882449240821643195196205777552441} a^{10} - \frac{24117995570962242694339216499337413582566367594774025915344916}{75765118594025939044622205507882449240821643195196205777552441} a^{9} + \frac{774631064141621854588808799408163734228813322790945786690037}{75765118594025939044622205507882449240821643195196205777552441} a^{8} - \frac{35772283191688853631393151852057352637267949482635266372370430}{75765118594025939044622205507882449240821643195196205777552441} a^{7} - \frac{14664309678238307978097430598181274192346094898748288057248358}{75765118594025939044622205507882449240821643195196205777552441} a^{6} + \frac{11225312997163152855655061824234275507466723882221745825229008}{75765118594025939044622205507882449240821643195196205777552441} a^{5} - \frac{1444768513843066662927380189165910441049186474658496092050668}{75765118594025939044622205507882449240821643195196205777552441} a^{4} + \frac{1019640935874423163766131024099638197455309249245486766096613}{75765118594025939044622205507882449240821643195196205777552441} a^{3} - \frac{21587546534117329856657891378922872550202885351908902182275900}{75765118594025939044622205507882449240821643195196205777552441} a^{2} - \frac{36197046434197460529529777317312375743797601841703372880932513}{75765118594025939044622205507882449240821643195196205777552441} a + \frac{185264079171196065861361698276751569891956965710622941250094}{75765118594025939044622205507882449240821643195196205777552441}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{127066799206097184585371970332918257474274803664}{941237358447060535109492455619916777937088511432387911} a^{15} - \frac{682057823297135239218734566771276778166070190270}{941237358447060535109492455619916777937088511432387911} a^{14} - \frac{1884495277620760309335223341000715216680186887710}{941237358447060535109492455619916777937088511432387911} a^{13} + \frac{19920211688665459773122388582360315865920321205312}{941237358447060535109492455619916777937088511432387911} a^{12} - \frac{1243418817499823882838727098232676542938992829670}{941237358447060535109492455619916777937088511432387911} a^{11} + \frac{106146588302281212500269831476925574258686825448892}{941237358447060535109492455619916777937088511432387911} a^{10} + \frac{455923915485722785348762224937488578309631972339340}{941237358447060535109492455619916777937088511432387911} a^{9} - \frac{1294872282436999733152075438883442935539100742337885}{941237358447060535109492455619916777937088511432387911} a^{8} + \frac{17873089722416504615177798853958814412104049476132979}{941237358447060535109492455619916777937088511432387911} a^{7} - \frac{28504800189325868007946366037052140878297467928202242}{941237358447060535109492455619916777937088511432387911} a^{6} + \frac{152286802617076086216611108028688405814320609370412668}{941237358447060535109492455619916777937088511432387911} a^{5} + \frac{2770439358297438781404267356309323608717867172608348466}{941237358447060535109492455619916777937088511432387911} a^{4} - \frac{2912606783515690862617274892694854722564844847837387735}{941237358447060535109492455619916777937088511432387911} a^{3} - \frac{20066958664449566344201009431222010981030143158754010654}{941237358447060535109492455619916777937088511432387911} a^{2} + \frac{74619438643119003892437782534625606532326521637655342934}{941237358447060535109492455619916777937088511432387911} a + \frac{202135835767608252202211753942435349451186140790779333944}{941237358447060535109492455619916777937088511432387911} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 98425491.4374 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n852 |
| Character table for t16n852 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.26265625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||
| 661 | Data not computed | ||||||