Normalized defining polynomial
\( x^{16} - 5 x^{15} - 159 x^{14} + 713 x^{13} + 11862 x^{12} - 45779 x^{11} - 533858 x^{10} + 1680795 x^{9} + 15677672 x^{8} - 37075883 x^{7} - 305662967 x^{6} + 473105398 x^{5} + 3849869651 x^{4} - 3018651066 x^{3} - 28642020832 x^{2} + 6126502272 x + 98463142096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(221385427428590205586181640625=5^{12}\cdot 41^{6}\cdot 661^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{110} a^{13} + \frac{1}{22} a^{12} + \frac{7}{110} a^{11} - \frac{6}{55} a^{10} + \frac{3}{110} a^{9} - \frac{39}{110} a^{8} - \frac{13}{55} a^{7} + \frac{4}{11} a^{6} + \frac{9}{22} a^{5} - \frac{6}{55} a^{4} - \frac{53}{110} a^{3} - \frac{6}{55} a^{2} + \frac{7}{55} a + \frac{1}{5}$, $\frac{1}{660} a^{14} - \frac{1}{660} a^{13} + \frac{7}{220} a^{12} + \frac{133}{660} a^{11} + \frac{16}{165} a^{10} - \frac{41}{220} a^{9} - \frac{149}{330} a^{8} - \frac{13}{660} a^{7} + \frac{39}{110} a^{6} - \frac{21}{44} a^{5} - \frac{49}{132} a^{4} - \frac{61}{165} a^{3} - \frac{211}{660} a^{2} - \frac{163}{330} a - \frac{2}{15}$, $\frac{1}{770387812673944087726516413000150834636289614635603520619080} a^{15} - \frac{238817531611756200067043010579098793674917683511902860267}{770387812673944087726516413000150834636289614635603520619080} a^{14} - \frac{1704301698375757977609194837948445068370801698525680310849}{770387812673944087726516413000150834636289614635603520619080} a^{13} + \frac{7302714631753594031920618539806895156610174246535866822535}{154077562534788817545303282600030166927257922927120704123816} a^{12} - \frac{3254873957013718897925570000504991172534484722940185198773}{32099492194747670321938183875006284776512067276483480025795} a^{11} - \frac{107218556809134627410974578749867225309384361455315809473067}{770387812673944087726516413000150834636289614635603520619080} a^{10} + \frac{2255836151786345478796963854134999450952030628793346874063}{38519390633697204386325820650007541731814480731780176030954} a^{9} - \frac{51692854022097079904594550937408709980675207995279828490211}{256795937557981362575505471000050278212096538211867840206360} a^{8} - \frac{25531603453655157129947766743139806648229414300863857464545}{77038781267394408772651641300015083463628961463560352061908} a^{7} + \frac{12715436253636323480603056605460674458469977394627245447723}{256795937557981362575505471000050278212096538211867840206360} a^{6} + \frac{26900143729957692168626300585441508875583180682105929118999}{770387812673944087726516413000150834636289614635603520619080} a^{5} - \frac{2808031111322724311160518432565602854641692342993203914259}{38519390633697204386325820650007541731814480731780176030954} a^{4} - \frac{34261075605920740504864498959849581770056797696112565728163}{256795937557981362575505471000050278212096538211867840206360} a^{3} + \frac{24048119602800749214242475491626889416227125437453283718887}{192596953168486021931629103250037708659072403658900880154770} a^{2} + \frac{33041547282936916504264395439995391865803959646609156994312}{96298476584243010965814551625018854329536201829450440077385} a - \frac{2142777204103992429253358033625404961210332686636014287582}{8754406962203910087801322875001714029957836529950040007035}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4779972196359307209920678864091801525719461837}{13222817834505236478777186038930191799737214902262255340} a^{15} - \frac{16866398041886489395519293849706527682785161819}{13222817834505236478777186038930191799737214902262255340} a^{14} - \frac{135623629770906885341132667313367151798892982257}{2644563566901047295755437207786038359947442980452451068} a^{13} + \frac{1777529815600857133976064969729861449856590332849}{13222817834505236478777186038930191799737214902262255340} a^{12} + \frac{3909633868170790858340932659171622340857602829937}{1101901486208769706564765503244182649978101241855187945} a^{11} - \frac{84144266745500808396647923223305520033934002541961}{13222817834505236478777186038930191799737214902262255340} a^{10} - \frac{982127173205071110451834779940980250364874052705031}{6611408917252618239388593019465095899868607451131127670} a^{9} + \frac{661515382823079847244637215868866380934703522722527}{4407605944835078826259062012976730599912404967420751780} a^{8} + \frac{26616547328281251923519081805867397723231974133087409}{6611408917252618239388593019465095899868607451131127670} a^{7} - \frac{4705778974731192017575187754788047643263958969772281}{4407605944835078826259062012976730599912404967420751780} a^{6} - \frac{185194871753989760195838375125822954715009499308774781}{2644563566901047295755437207786038359947442980452451068} a^{5} - \frac{19276817734382801918062495891637594071479998401168837}{661140891725261823938859301946509589986860745113112767} a^{4} + \frac{3150900332375463195261857162524461053246889761428909581}{4407605944835078826259062012976730599912404967420751780} a^{3} + \frac{2520579336749942079859396511381117897301114647667060797}{3305704458626309119694296509732547949934303725565563835} a^{2} - \frac{4319249739283783475328730164608317440429874358198324069}{1322281783450523647877718603893019179973721490226225534} a - \frac{1510983616493470819559078602888563938849152534746806083}{300518587147846283608572409975686177266754884142323985} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101264637.982 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T322):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.1025.1, 4.4.5125.1, 8.0.26265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 661 | Data not computed | ||||||