Properties

Label 16.0.22107931023...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{26}\cdot 5^{10}\cdot 241^{4}$
Root discriminant $33.23$
Ramified primes $2, 5, 241$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group 16T1605

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![100, 0, 900, 0, 2655, 0, 285, 0, 336, 0, -65, 0, 22, 0, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^14 + 22*x^12 - 65*x^10 + 336*x^8 + 285*x^6 + 2655*x^4 + 900*x^2 + 100)
 
gp: K = bnfinit(x^16 - 5*x^14 + 22*x^12 - 65*x^10 + 336*x^8 + 285*x^6 + 2655*x^4 + 900*x^2 + 100, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{14} + 22 x^{12} - 65 x^{10} + 336 x^{8} + 285 x^{6} + 2655 x^{4} + 900 x^{2} + 100 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2210793102376960000000000=2^{26}\cdot 5^{10}\cdot 241^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 241$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{8} + \frac{1}{10} a^{6} - \frac{1}{5} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} + \frac{1}{10} a^{7} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{1}{20} a^{10} - \frac{2}{5} a^{9} - \frac{1}{20} a^{8} + \frac{9}{20} a^{7} + \frac{9}{20} a^{6} - \frac{2}{5} a^{5} + \frac{3}{20} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{10} + \frac{7}{20} a^{9} - \frac{2}{5} a^{8} + \frac{9}{20} a^{6} - \frac{9}{20} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{13187868100} a^{14} - \frac{3902847}{1318786810} a^{12} - \frac{1}{20} a^{11} - \frac{10734351}{248827700} a^{10} - \frac{2}{5} a^{9} + \frac{69368047}{263757362} a^{8} + \frac{9}{20} a^{7} - \frac{4570072079}{13187868100} a^{6} - \frac{2}{5} a^{5} + \frac{239479877}{659393405} a^{4} + \frac{1}{4} a^{3} - \frac{341472371}{1318786810} a^{2} - \frac{1}{2} a + \frac{60200353}{131878681}$, $\frac{1}{13187868100} a^{15} - \frac{3902847}{1318786810} a^{13} + \frac{853517}{124413850} a^{11} - \frac{1}{20} a^{10} - \frac{444431851}{1318786810} a^{9} - \frac{2}{5} a^{8} + \frac{670813844}{3296967025} a^{7} + \frac{9}{20} a^{6} - \frac{156156166}{659393405} a^{5} - \frac{2}{5} a^{4} + \frac{1295235473}{2637573620} a^{3} + \frac{1}{4} a^{2} - \frac{11477975}{263757362} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 357896.394374 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1605:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 124 conjugacy class representatives for t16n1605 are not computed
Character table for t16n1605 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.6025.1, 8.0.2323240000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.6.5$x^{4} + 2 x^{2} - 4$$2$$2$$6$$D_{4}$$[2, 3]^{2}$
2.8.20.22$x^{8} + 8 x^{6} + 10 x^{4} + 8 x^{3} + 28$$4$$2$$20$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
241Data not computed