Normalized defining polynomial
\( x^{16} - 40 x^{14} + 682 x^{12} - 6420 x^{10} + 36466 x^{8} - 131784 x^{6} + 319464 x^{4} - 499392 x^{2} + 374544 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2201295421769100124225536=2^{50}\cdot 3^{4}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{3}$, $\frac{1}{612} a^{12} - \frac{10}{153} a^{10} + \frac{35}{306} a^{8} - \frac{25}{51} a^{6} - \frac{127}{306} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{612} a^{13} + \frac{11}{612} a^{11} - \frac{67}{306} a^{9} + \frac{35}{102} a^{7} - \frac{127}{306} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2016003059352} a^{14} - \frac{185456953}{504000764838} a^{12} - \frac{20122803451}{1008001529676} a^{10} + \frac{13965670954}{84000127473} a^{8} + \frac{196377175133}{1008001529676} a^{6} + \frac{40698086261}{84000127473} a^{4} + \frac{30530033}{1647061323} a^{2} + \frac{238514419}{549020441}$, $\frac{1}{2016003059352} a^{15} - \frac{185456953}{504000764838} a^{13} - \frac{20122803451}{1008001529676} a^{11} + \frac{13965670954}{84000127473} a^{9} + \frac{196377175133}{1008001529676} a^{7} + \frac{40698086261}{84000127473} a^{5} + \frac{30530033}{1647061323} a^{3} + \frac{238514419}{549020441} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{196134493}{2016003059352} a^{14} - \frac{3795028379}{1008001529676} a^{12} + \frac{60528485921}{1008001529676} a^{10} - \frac{42666129437}{84000127473} a^{8} + \frac{2475892898501}{1008001529676} a^{6} - \frac{1202950568879}{168000254946} a^{4} + \frac{22594038706}{1647061323} a^{2} - \frac{7132155793}{549020441} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1821807.79264 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.25.7 | $x^{8} + 10 x^{4} + 28 x^{2} + 18$ | $8$ | $1$ | $25$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ |
| 2.8.25.3 | $x^{8} + 10 x^{4} + 12 x^{2} + 18$ | $8$ | $1$ | $25$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ | |
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |