Normalized defining polynomial
\( x^{16} - 6 x^{15} + 174 x^{14} - 652 x^{13} + 9346 x^{12} - 30868 x^{11} + 255841 x^{10} - 1057485 x^{9} + 4134399 x^{8} - 17495412 x^{7} + 55333563 x^{6} - 193059815 x^{5} + 500688278 x^{4} - 979188614 x^{3} + 1719758063 x^{2} - 1515380265 x + 4014327025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(220059874915222898374641881988530176=2^{16}\cdot 41^{14}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $161.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{15} + \frac{1277422479143761105312994616382257053788397894286886101973597309782565709}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{14} - \frac{1099020498313945552989542449155008956611713235521972101350545297353479381}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{13} - \frac{21764346252557180889573598842129230422087443236005646053763810795107527}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{12} - \frac{574718427441995387316169763142252229489805737208446949365711689402178424}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{11} + \frac{1293123819701916144768667906012008856213029290214393614977762267003178627}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{10} - \frac{391452761884002931295705125667476984892478023904530858193248520600836279}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{9} + \frac{224241583775121010564457793772220616661649405634517174936745923442496933}{686559515616169222655368716455935404049456075936591161778283714847127181} a^{8} - \frac{1204403754124115703406155452902513018150947103501352316495402655717483246}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{7} + \frac{1454430724096979086927132536439309108057491241243016981164136643762908418}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{6} + \frac{1629549980629984766315284523670700193914753385910587940526748298148867103}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{5} - \frac{184224270759715679657574161505704283619935161331325186167061946179325476}{686559515616169222655368716455935404049456075936591161778283714847127181} a^{4} - \frac{979259441187634282044887443596425179602147646747304810101622818601260712}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{3} + \frac{1214736996949551813398197157636648797585050469779283549811529378112635131}{3432797578080846113276843582279677020247280379682955808891418574235635905} a^{2} - \frac{1318977796624118799364773802435818515274225587968613166786996325166378642}{3432797578080846113276843582279677020247280379682955808891418574235635905} a + \frac{327176320334747828216542131974185506810047639212034220281858883989691735}{686559515616169222655368716455935404049456075936591161778283714847127181}$
Class group and class number
$C_{2}\times C_{216554}$, which has order $433108$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 239630.30249 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T209):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.13448.1, 4.4.68921.1, 4.4.551368.1, 8.8.304006671424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| 41 | Data not computed | ||||||
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |