Normalized defining polynomial
\( x^{16} - 2 x^{15} + 8 x^{14} - 6 x^{13} + 18 x^{12} + 94 x^{11} - 349 x^{10} + 141 x^{9} + 1585 x^{8} - 722 x^{7} + 9689 x^{6} + 5625 x^{5} + 54426 x^{4} - 3854 x^{3} + 147729 x^{2} - 4659 x + 156301 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(219880372985150440000000000=2^{12}\cdot 5^{10}\cdot 19^{4}\cdot 59^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{1045} a^{14} - \frac{3}{95} a^{13} + \frac{7}{1045} a^{12} - \frac{16}{209} a^{11} - \frac{281}{1045} a^{10} + \frac{1}{55} a^{9} + \frac{267}{1045} a^{8} + \frac{414}{1045} a^{7} - \frac{417}{1045} a^{6} + \frac{417}{1045} a^{5} - \frac{82}{1045} a^{4} + \frac{204}{1045} a^{3} - \frac{18}{1045} a^{2} - \frac{5}{11} a - \frac{108}{1045}$, $\frac{1}{181086976141035103973220611533945405} a^{15} + \frac{84534276269937556744319592623833}{181086976141035103973220611533945405} a^{14} - \frac{17580518053809836558986432331714211}{181086976141035103973220611533945405} a^{13} + \frac{1363353479042422107556417893453968}{36217395228207020794644122306789081} a^{12} + \frac{168772608063233250943266387176286}{1906178696221422147086532752988899} a^{11} - \frac{85758613529780949277140182791856987}{181086976141035103973220611533945405} a^{10} - \frac{8494264583132126403796709088409428}{25869568020147871996174373076277915} a^{9} - \frac{5689136759773979276157838544348542}{181086976141035103973220611533945405} a^{8} + \frac{65424856784442691336998667161846918}{181086976141035103973220611533945405} a^{7} + \frac{4500893608566155137819578511400928}{9530893481107110735432663764944495} a^{6} + \frac{1286190970007313069964306123160858}{5173913604029574399234874615255583} a^{5} + \frac{2757813518180658342530613074341847}{16462452376457736724838237412176855} a^{4} + \frac{3758834151809100299957211021236301}{25869568020147871996174373076277915} a^{3} - \frac{19341651838809862976831821547981569}{181086976141035103973220611533945405} a^{2} - \frac{44061610375992800107423360625535558}{181086976141035103973220611533945405} a - \frac{3258245574646762560846567617763801}{36217395228207020794644122306789081}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 398217.189935 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 70 conjugacy class representatives for t16n1174 are not computed |
| Character table for t16n1174 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.28025.1, 8.0.741418190000.1, 8.0.62832050000.1, 8.8.3707090950000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.15 | $x^{8} + 2 x^{7} + 2 x^{4} + 12$ | $4$ | $2$ | $12$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $59$ | 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.4.3.1 | $x^{4} + 177$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 59.4.3.1 | $x^{4} + 177$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |