Properties

Label 16.0.21972837990...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 5^{8}\cdot 11^{4}\cdot 229$
Root discriminant $16.18$
Ramified primes $2, 5, 11, 229$
Class number $1$
Class group Trivial
Galois group 16T1719

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29, -134, 334, -566, 719, -762, 738, -674, 546, -358, 196, -96, 36, -10, 6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 6*x^14 - 10*x^13 + 36*x^12 - 96*x^11 + 196*x^10 - 358*x^9 + 546*x^8 - 674*x^7 + 738*x^6 - 762*x^5 + 719*x^4 - 566*x^3 + 334*x^2 - 134*x + 29)
 
gp: K = bnfinit(x^16 - 4*x^15 + 6*x^14 - 10*x^13 + 36*x^12 - 96*x^11 + 196*x^10 - 358*x^9 + 546*x^8 - 674*x^7 + 738*x^6 - 762*x^5 + 719*x^4 - 566*x^3 + 334*x^2 - 134*x + 29, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 6 x^{14} - 10 x^{13} + 36 x^{12} - 96 x^{11} + 196 x^{10} - 358 x^{9} + 546 x^{8} - 674 x^{7} + 738 x^{6} - 762 x^{5} + 719 x^{4} - 566 x^{3} + 334 x^{2} - 134 x + 29 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(21972837990400000000=2^{24}\cdot 5^{8}\cdot 11^{4}\cdot 229\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 229$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{71310322415} a^{15} + \frac{1201605472}{14262064483} a^{14} - \frac{754285239}{14262064483} a^{13} + \frac{4907129618}{71310322415} a^{12} + \frac{23961309124}{71310322415} a^{11} - \frac{27527312371}{71310322415} a^{10} + \frac{6629823781}{71310322415} a^{9} - \frac{6988781861}{14262064483} a^{8} + \frac{10403101233}{71310322415} a^{7} + \frac{34827431817}{71310322415} a^{6} - \frac{32907276389}{71310322415} a^{5} - \frac{4777652599}{14262064483} a^{4} + \frac{20319851104}{71310322415} a^{3} + \frac{6885485414}{14262064483} a^{2} - \frac{5138940395}{14262064483} a + \frac{1079490522}{2458976635}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 673.410974096 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1719:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 152 conjugacy class representatives for t16n1719 are not computed
Character table for t16n1719 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.4400.1, 4.2.400.1, 4.2.275.1, 8.4.19360000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
229Data not computed