Normalized defining polynomial
\( x^{16} - 6 x^{15} + 15 x^{14} + 2 x^{13} - 94 x^{12} + 234 x^{11} - 123 x^{10} - 282 x^{9} + 498 x^{8} - 178 x^{7} + 1437 x^{6} - 2994 x^{5} - 579 x^{4} - 2072 x^{3} + 5130 x^{2} + 2296 x + 916 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2176782336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{20} a^{12} - \frac{1}{5} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{4} a^{8} + \frac{1}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{4} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{20} a^{13} + \frac{1}{10} a^{11} + \frac{1}{5} a^{10} + \frac{3}{20} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{10} a^{6} - \frac{1}{20} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{3}{10} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{260} a^{14} + \frac{3}{130} a^{13} + \frac{1}{65} a^{12} - \frac{8}{65} a^{11} - \frac{17}{260} a^{10} - \frac{11}{65} a^{9} + \frac{29}{130} a^{8} + \frac{1}{26} a^{7} + \frac{3}{260} a^{6} - \frac{9}{65} a^{5} + \frac{7}{65} a^{4} - \frac{2}{65} a^{3} + \frac{1}{65} a^{2} + \frac{11}{65} a - \frac{1}{65}$, $\frac{1}{167793613863075231198700} a^{15} + \frac{2124326641135800939}{12907201066390402399900} a^{14} + \frac{3631511873314550508381}{167793613863075231198700} a^{13} - \frac{407006915453401336807}{33558722772615046239740} a^{12} + \frac{10072596857938555195651}{167793613863075231198700} a^{11} + \frac{38628365057772308737067}{167793613863075231198700} a^{10} - \frac{37985529966070510334137}{167793613863075231198700} a^{9} - \frac{2166106482561794739241}{12907201066390402399900} a^{8} + \frac{26102331374033386601709}{167793613863075231198700} a^{7} - \frac{38248070782238566914771}{167793613863075231198700} a^{6} + \frac{40198409106263304336619}{167793613863075231198700} a^{5} - \frac{38269039538640464301157}{167793613863075231198700} a^{4} - \frac{50248622148815241573}{1290720106639040239990} a^{3} - \frac{15407078504941798075773}{41948403465768807799675} a^{2} - \frac{1318629428965970084914}{41948403465768807799675} a + \frac{9801387698922406485047}{41948403465768807799675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{129396703096}{258744287374975} a^{15} - \frac{1534529025061}{517488574749950} a^{14} + \frac{1916339570651}{258744287374975} a^{13} + \frac{20537607921}{20699542989998} a^{12} - \frac{11746569860249}{258744287374975} a^{11} + \frac{28878354871457}{258744287374975} a^{10} - \frac{12809328951357}{258744287374975} a^{9} - \frac{74659954422731}{517488574749950} a^{8} + \frac{57373119681729}{258744287374975} a^{7} + \frac{8172027276619}{258744287374975} a^{6} + \frac{149844442054969}{258744287374975} a^{5} - \frac{721733873486769}{517488574749950} a^{4} - \frac{3210090208327}{51748857474995} a^{3} - \frac{490194099669809}{517488574749950} a^{2} + \frac{596979056669124}{258744287374975} a + \frac{242317491367788}{258744287374975} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15797.6605593 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_4$ (as 16T19):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4 \times D_4$ |
| Character table for $C_4 \times D_4$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.4.8000.1, 4.0.72000.2, 4.0.5400.2, \(\Q(\sqrt{-3}, \sqrt{5})\), 4.0.5400.1, 8.0.29160000.1, 8.0.5184000000.4, 8.0.729000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |