Normalized defining polynomial
\( x^{16} - 6 x^{15} + 13 x^{14} - 12 x^{13} + 18 x^{12} - 150 x^{11} + 604 x^{10} - 1206 x^{9} + 1123 x^{8} + 342 x^{7} - 2094 x^{6} + 1614 x^{5} + 648 x^{4} - 1656 x^{3} + 117 x^{2} + 1134 x + 441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2176782336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{9}{19} a^{8} - \frac{3}{19} a^{7} + \frac{5}{19} a^{6} - \frac{8}{19} a^{5} + \frac{8}{19} a^{4} - \frac{9}{19} a^{3} - \frac{2}{19} a^{2} - \frac{5}{19} a + \frac{3}{19}$, $\frac{1}{19} a^{10} - \frac{8}{19} a^{8} - \frac{3}{19} a^{7} - \frac{1}{19} a^{6} - \frac{7}{19} a^{5} + \frac{6}{19} a^{4} - \frac{7}{19} a^{3} - \frac{4}{19} a^{2} - \frac{4}{19} a + \frac{8}{19}$, $\frac{1}{19} a^{11} + \frac{1}{19} a^{8} - \frac{6}{19} a^{7} - \frac{5}{19} a^{6} - \frac{1}{19} a^{5} - \frac{1}{19} a^{2} + \frac{6}{19} a + \frac{5}{19}$, $\frac{1}{798} a^{12} + \frac{1}{133} a^{11} - \frac{1}{399} a^{10} - \frac{1}{133} a^{9} + \frac{115}{266} a^{8} - \frac{34}{133} a^{7} - \frac{311}{798} a^{6} - \frac{40}{133} a^{5} - \frac{11}{798} a^{4} + \frac{1}{7} a^{3} - \frac{9}{133} a^{2} - \frac{5}{133} a - \frac{13}{38}$, $\frac{1}{798} a^{13} + \frac{2}{399} a^{11} + \frac{1}{133} a^{10} + \frac{1}{266} a^{9} + \frac{62}{133} a^{8} + \frac{199}{798} a^{7} + \frac{54}{133} a^{6} - \frac{377}{798} a^{5} + \frac{58}{133} a^{4} + \frac{45}{133} a^{3} + \frac{5}{19} a^{2} - \frac{115}{266} a - \frac{2}{19}$, $\frac{1}{24738} a^{14} - \frac{5}{8246} a^{13} - \frac{13}{24738} a^{12} + \frac{79}{4123} a^{11} + \frac{325}{24738} a^{10} + \frac{73}{8246} a^{9} + \frac{158}{399} a^{8} + \frac{163}{434} a^{7} + \frac{2524}{12369} a^{6} - \frac{3821}{8246} a^{5} - \frac{10559}{24738} a^{4} - \frac{1089}{4123} a^{3} - \frac{635}{8246} a^{2} + \frac{313}{8246} a - \frac{291}{1178}$, $\frac{1}{37131738} a^{15} - \frac{283}{18565869} a^{14} - \frac{4241}{37131738} a^{13} - \frac{19147}{37131738} a^{12} + \frac{266409}{12377246} a^{11} + \frac{27473}{18565869} a^{10} + \frac{120752}{18565869} a^{9} - \frac{3877427}{37131738} a^{8} - \frac{6658369}{18565869} a^{7} - \frac{13498141}{37131738} a^{6} - \frac{4506863}{12377246} a^{5} - \frac{1729523}{37131738} a^{4} + \frac{2713731}{12377246} a^{3} + \frac{81324}{6188623} a^{2} - \frac{740653}{12377246} a + \frac{279505}{1768178}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3926}{235011} a^{15} + \frac{3880}{33573} a^{14} - \frac{74660}{235011} a^{13} + \frac{109285}{235011} a^{12} - \frac{7590}{11191} a^{11} + \frac{241061}{78337} a^{10} - \frac{3005360}{235011} a^{9} + \frac{7307500}{235011} a^{8} - \frac{1499270}{33573} a^{7} + \frac{7157845}{235011} a^{6} + \frac{934644}{78337} a^{5} - \frac{3033785}{78337} a^{4} + \frac{1664640}{78337} a^{3} + \frac{883385}{78337} a^{2} - \frac{143160}{11191} a - \frac{99151}{11191} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26643.8469845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |