Normalized defining polynomial
\( x^{16} - 8 x^{15} + 29 x^{14} - 60 x^{13} + 81 x^{12} - 106 x^{11} + 208 x^{10} - 380 x^{9} + 427 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(217678233600000000\)
\(\medspace = 2^{20}\cdot 3^{12}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(12.12\) |
| |
| Galois root discriminant: | $2^{2}3^{3/4}5^{1/2}\approx 20.38853093816547$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}, \sqrt{5})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19}a^{14}-\frac{7}{19}a^{13}-\frac{1}{19}a^{12}+\frac{5}{19}a^{11}-\frac{5}{19}a^{10}+\frac{2}{19}a^{9}+\frac{2}{19}a^{8}-\frac{6}{19}a^{7}-\frac{5}{19}a^{6}+\frac{6}{19}a^{5}-\frac{4}{19}a^{4}-\frac{3}{19}a^{3}-\frac{4}{19}a+\frac{5}{19}$, $\frac{1}{97881673}a^{15}-\frac{1506353}{97881673}a^{14}+\frac{30427997}{97881673}a^{13}+\frac{31088021}{97881673}a^{12}+\frac{11995211}{97881673}a^{11}+\frac{15266898}{97881673}a^{10}+\frac{1177076}{97881673}a^{9}+\frac{18200460}{97881673}a^{8}-\frac{30477673}{97881673}a^{7}+\frac{37114413}{97881673}a^{6}-\frac{19828104}{97881673}a^{5}-\frac{19299282}{97881673}a^{4}-\frac{15710072}{97881673}a^{3}+\frac{23903915}{97881673}a^{2}-\frac{7557483}{97881673}a+\frac{2386365}{97881673}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( \frac{8690}{312721} a^{15} + \frac{13687}{312721} a^{14} - \frac{15880}{16459} a^{13} + \frac{1139371}{312721} a^{12} - \frac{1993634}{312721} a^{11} + \frac{104505}{16459} a^{10} - \frac{2749402}{312721} a^{9} + \frac{7482859}{312721} a^{8} - \frac{12764514}{312721} a^{7} + \frac{9913544}{312721} a^{6} - \frac{507904}{312721} a^{5} - \frac{3936209}{312721} a^{4} + \frac{1480768}{312721} a^{3} + \frac{1347984}{312721} a^{2} - \frac{1372616}{312721} a + \frac{208767}{312721} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{33354925}{97881673}a^{15}-\frac{237637535}{97881673}a^{14}+\frac{777224020}{97881673}a^{13}-\frac{1453760719}{97881673}a^{12}+\frac{1863482943}{97881673}a^{11}-\frac{2681753152}{97881673}a^{10}+\frac{5486429294}{97881673}a^{9}-\frac{9139843589}{97881673}a^{8}+\frac{9136289532}{97881673}a^{7}-\frac{4227366435}{97881673}a^{6}-\frac{552850963}{97881673}a^{5}+\frac{1347862875}{97881673}a^{4}+\frac{222464166}{97881673}a^{3}-\frac{962316360}{97881673}a^{2}+\frac{401243449}{97881673}a-\frac{52089289}{97881673}$, $\frac{1208795}{97881673}a^{15}+\frac{181516}{97881673}a^{14}-\frac{32909611}{97881673}a^{13}+\frac{137289857}{97881673}a^{12}-\frac{249345796}{97881673}a^{11}+\frac{238137176}{97881673}a^{10}-\frac{299273663}{97881673}a^{9}+\frac{894772230}{97881673}a^{8}-\frac{1605590363}{97881673}a^{7}+\frac{1223301220}{97881673}a^{6}+\frac{48652822}{97881673}a^{5}-\frac{556150755}{97881673}a^{4}+\frac{11591694}{5151667}a^{3}+\frac{67299479}{97881673}a^{2}-\frac{68695223}{97881673}a+\frac{2527642}{5151667}$, $\frac{5189111}{97881673}a^{15}-\frac{39493085}{97881673}a^{14}+\frac{147492624}{97881673}a^{13}-\frac{335372017}{97881673}a^{12}+\frac{536366657}{97881673}a^{11}-\frac{753143325}{97881673}a^{10}+\frac{1253777640}{97881673}a^{9}-\frac{115534649}{5151667}a^{8}+\frac{2979252888}{97881673}a^{7}-\frac{2531078045}{97881673}a^{6}+\frac{875050253}{97881673}a^{5}+\frac{507484916}{97881673}a^{4}-\frac{432427934}{97881673}a^{3}-\frac{286076339}{97881673}a^{2}+\frac{426263219}{97881673}a-\frac{5764722}{97881673}$, $\frac{6873030}{97881673}a^{15}-\frac{43284699}{97881673}a^{14}+\frac{135250879}{97881673}a^{13}-\frac{258871614}{97881673}a^{12}+\frac{385606603}{97881673}a^{11}-\frac{608866811}{97881673}a^{10}+\frac{1090838557}{97881673}a^{9}-\frac{1691445279}{97881673}a^{8}+\frac{1963569735}{97881673}a^{7}-\frac{1572223950}{97881673}a^{6}+\frac{675416060}{97881673}a^{5}+\frac{93494842}{97881673}a^{4}-\frac{152905040}{97881673}a^{3}-\frac{7702917}{97881673}a^{2}+\frac{54875753}{97881673}a-\frac{51271966}{97881673}$, $\frac{12470196}{97881673}a^{15}-\frac{91654761}{97881673}a^{14}+\frac{309445956}{97881673}a^{13}-\frac{601508620}{97881673}a^{12}+\frac{802307817}{97881673}a^{11}-\frac{1152474821}{97881673}a^{10}+\frac{2289173962}{97881673}a^{9}-\frac{3833775516}{97881673}a^{8}+\frac{4036454578}{97881673}a^{7}-\frac{2304821754}{97881673}a^{6}+\frac{328302031}{97881673}a^{5}+\frac{528222798}{97881673}a^{4}-\frac{305859793}{97881673}a^{3}-\frac{286221727}{97881673}a^{2}+\frac{302397934}{97881673}a-\frac{72417954}{97881673}$, $\frac{28674442}{97881673}a^{15}-\frac{205238560}{97881673}a^{14}+\frac{667234788}{97881673}a^{13}-\frac{1221673302}{97881673}a^{12}+\frac{1498680373}{97881673}a^{11}-\frac{2137521334}{97881673}a^{10}+\frac{4570644666}{97881673}a^{9}-\frac{7628545404}{97881673}a^{8}+\frac{7167643760}{97881673}a^{7}-\frac{2545202859}{97881673}a^{6}-\frac{1138296628}{97881673}a^{5}+\frac{55405159}{5151667}a^{4}+\frac{405789557}{97881673}a^{3}-\frac{847773096}{97881673}a^{2}+\frac{340527315}{97881673}a-\frac{68832551}{97881673}$, $\frac{4378103}{97881673}a^{15}-\frac{36319974}{97881673}a^{14}+\frac{138608370}{97881673}a^{13}-\frac{314130826}{97881673}a^{12}+\frac{490118420}{97881673}a^{11}-\frac{689448701}{97881673}a^{10}+\frac{1177800128}{97881673}a^{9}-\frac{2063888592}{97881673}a^{8}+\frac{2752757928}{97881673}a^{7}-\frac{2338500408}{97881673}a^{6}+\frac{841725261}{97881673}a^{5}+\frac{414896761}{97881673}a^{4}-\frac{206321403}{97881673}a^{3}-\frac{499744971}{97881673}a^{2}+\frac{352954496}{97881673}a-\frac{50432086}{97881673}$
|
| |
| Regulator: | \( 265.442006674 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 265.442006674 \cdot 1}{6\cdot\sqrt{217678233600000000}}\cr\approx \mathstrut & 0.230329649135 \end{aligned}\]
Galois group
$C_4^2:C_2^2$ (as 16T117):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $C_4^2:C_2^2$ |
| Character table for $C_4^2:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), 4.0.21600.2, 4.0.21600.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.466560000.2, 8.0.7290000.1, 8.0.3240000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 16.0.13604889600000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.2.12a1.9 | $x^{8} + 2 x^{5} + 6 x^{4} + x^{2} + 6 x + 7$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $$[3]^{4}$$ |
| 2.4.2.8a1.1 | $x^{8} + 2 x^{5} + 4 x^{4} + x^{2} + 4 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $$[2]^{4}$$ | |
|
\(3\)
| 3.4.4.12a1.3 | $x^{16} + 8 x^{15} + 24 x^{14} + 32 x^{13} + 24 x^{12} + 48 x^{11} + 96 x^{10} + 64 x^{9} + 24 x^{8} + 96 x^{7} + 96 x^{6} + 32 x^{4} + 64 x^{3} + 19$ | $4$ | $4$ | $12$ | $C_4:C_4$ | $$[\ ]_{4}^{4}$$ |
|
\(5\)
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 5.4.2.4a1.2 | $x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |