Properties

Label 16.0.21730832354...2721.2
Degree $16$
Signature $[0, 8]$
Discriminant $17^{10}\cdot 47^{6}$
Root discriminant $24.89$
Ramified primes $17, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4.D_4$ (as 16T339)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![117, 288, 76, -55, 1, -690, -445, 351, 252, 23, 73, 16, 1, 5, 4, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 4*x^14 + 5*x^13 + x^12 + 16*x^11 + 73*x^10 + 23*x^9 + 252*x^8 + 351*x^7 - 445*x^6 - 690*x^5 + x^4 - 55*x^3 + 76*x^2 + 288*x + 117)
 
gp: K = bnfinit(x^16 - 2*x^15 + 4*x^14 + 5*x^13 + x^12 + 16*x^11 + 73*x^10 + 23*x^9 + 252*x^8 + 351*x^7 - 445*x^6 - 690*x^5 + x^4 - 55*x^3 + 76*x^2 + 288*x + 117, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 4 x^{14} + 5 x^{13} + x^{12} + 16 x^{11} + 73 x^{10} + 23 x^{9} + 252 x^{8} + 351 x^{7} - 445 x^{6} - 690 x^{5} + x^{4} - 55 x^{3} + 76 x^{2} + 288 x + 117 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(21730832354890360782721=17^{10}\cdot 47^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{3} a^{11} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{4} a^{9} - \frac{1}{12} a^{8} + \frac{1}{3} a^{7} + \frac{5}{12} a^{6} + \frac{1}{12} a^{5} + \frac{1}{3} a^{4} + \frac{5}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{808223124556132425576} a^{15} - \frac{1348076432751706627}{269407708185377475192} a^{14} - \frac{51454507706335617389}{808223124556132425576} a^{13} + \frac{566277226307722028}{101027890569516553197} a^{12} + \frac{64299012921355696531}{269407708185377475192} a^{11} + \frac{245850102878634865441}{808223124556132425576} a^{10} + \frac{43405667050826199391}{134703854092688737596} a^{9} + \frac{197484881856477788129}{808223124556132425576} a^{8} - \frac{326063676257261841971}{808223124556132425576} a^{7} + \frac{62872848646330449341}{202055781139033106394} a^{6} + \frac{37347835311629343647}{89802569395125825064} a^{5} - \frac{11596430831028431003}{89802569395125825064} a^{4} - \frac{176876099400860951}{401302445161932684} a^{3} + \frac{280265888724056493151}{808223124556132425576} a^{2} - \frac{16118487403513824645}{89802569395125825064} a + \frac{6868105544211147091}{89802569395125825064}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 67793.3881476 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.D_4$ (as 16T339):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 23 conjugacy class representatives for $C_2^4.D_4$
Character table for $C_2^4.D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.2.13583.1, 8.0.3136464113.1, 8.2.8671400783.1, 8.2.147413813311.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.4.3.2$x^{4} - 153$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.3.2$x^{4} - 153$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$47$47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$