Normalized defining polynomial
\( x^{16} - 8 x^{15} + 196 x^{14} - 1232 x^{13} + 16666 x^{12} - 84344 x^{11} + 812720 x^{10} - 3318856 x^{9} + 24998651 x^{8} - 80960632 x^{7} + 498035776 x^{6} - 1223807560 x^{5} + 6284093722 x^{4} - 10616762656 x^{3} + 45932378476 x^{2} - 40815400920 x + 148858281023 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21686570067329360666414797746601984=2^{62}\cdot 7^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2912=2^{5}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2912}(1,·)$, $\chi_{2912}(1093,·)$, $\chi_{2912}(2185,·)$, $\chi_{2912}(909,·)$, $\chi_{2912}(2001,·)$, $\chi_{2912}(729,·)$, $\chi_{2912}(1821,·)$, $\chi_{2912}(545,·)$, $\chi_{2912}(1637,·)$, $\chi_{2912}(2729,·)$, $\chi_{2912}(365,·)$, $\chi_{2912}(1457,·)$, $\chi_{2912}(2549,·)$, $\chi_{2912}(1273,·)$, $\chi_{2912}(2365,·)$, $\chi_{2912}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} + \frac{3}{17} a^{10} - \frac{3}{17} a^{9} + \frac{8}{17} a^{8} - \frac{5}{17} a^{7} + \frac{4}{17} a^{6} - \frac{2}{17} a^{5} - \frac{7}{17} a^{4} - \frac{6}{17} a^{2} - \frac{2}{17} a - \frac{4}{17}$, $\frac{1}{17} a^{12} + \frac{5}{17} a^{10} + \frac{5}{17} a^{8} + \frac{2}{17} a^{7} + \frac{3}{17} a^{6} - \frac{1}{17} a^{5} + \frac{4}{17} a^{4} - \frac{6}{17} a^{3} - \frac{1}{17} a^{2} + \frac{2}{17} a - \frac{5}{17}$, $\frac{1}{17} a^{13} + \frac{2}{17} a^{10} + \frac{3}{17} a^{9} - \frac{4}{17} a^{8} - \frac{6}{17} a^{7} - \frac{4}{17} a^{6} - \frac{3}{17} a^{5} - \frac{5}{17} a^{4} - \frac{1}{17} a^{3} - \frac{2}{17} a^{2} + \frac{5}{17} a + \frac{3}{17}$, $\frac{1}{31458164344899280495681} a^{14} - \frac{7}{31458164344899280495681} a^{13} + \frac{418673743923955632756}{31458164344899280495681} a^{12} - \frac{661562207961423179052}{31458164344899280495681} a^{11} + \frac{11764934669801731928463}{31458164344899280495681} a^{10} - \frac{13591854366203372433020}{31458164344899280495681} a^{9} - \frac{4043434904822007719662}{31458164344899280495681} a^{8} - \frac{7627772016929852214347}{31458164344899280495681} a^{7} + \frac{5875583698713093754402}{31458164344899280495681} a^{6} + \frac{4783661199961533425464}{31458164344899280495681} a^{5} - \frac{15600108525665956145907}{31458164344899280495681} a^{4} - \frac{9930575648946244568611}{31458164344899280495681} a^{3} - \frac{4122769224520214847350}{31458164344899280495681} a^{2} - \frac{15377263062491319685348}{31458164344899280495681} a + \frac{7331601226767268745214}{31458164344899280495681}$, $\frac{1}{176596602808468056220762942657} a^{15} + \frac{2806841}{176596602808468056220762942657} a^{14} - \frac{4090117940720092815998380473}{176596602808468056220762942657} a^{13} + \frac{1790831736498816370911411245}{176596602808468056220762942657} a^{12} + \frac{2447686973257113703393307395}{176596602808468056220762942657} a^{11} - \frac{15604385707239926121638224419}{176596602808468056220762942657} a^{10} + \frac{14045009366658465260154300570}{176596602808468056220762942657} a^{9} + \frac{71497209924830516480819272496}{176596602808468056220762942657} a^{8} - \frac{4162245343109358695855402256}{176596602808468056220762942657} a^{7} - \frac{17441413877368794980570775934}{176596602808468056220762942657} a^{6} - \frac{7165153713399359208729907221}{176596602808468056220762942657} a^{5} - \frac{83288860535712708806577953781}{176596602808468056220762942657} a^{4} + \frac{790945158039892327849515196}{10388035459321650365927231921} a^{3} + \frac{10596387948089030925847488}{335097918042633882771846191} a^{2} - \frac{32378149650886818764046801869}{176596602808468056220762942657} a - \frac{2297551663235921991231480244}{5696664606724776007121385247}$
Class group and class number
$C_{16}\times C_{184416}$, which has order $2950656$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||