Normalized defining polynomial
\( x^{16} - 7 x^{15} + 25 x^{14} + 64 x^{13} - 685 x^{12} + 2062 x^{11} + 3636 x^{10} - 40745 x^{9} + 104734 x^{8} + 64942 x^{7} - 1090436 x^{6} + 2368569 x^{5} + 34363 x^{4} - 10187697 x^{3} + 16326193 x^{2} - 3402607 x + 7078513 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2165234002589380425486809479441=13^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{60} a^{12} - \frac{3}{20} a^{11} - \frac{1}{30} a^{10} - \frac{1}{20} a^{9} + \frac{2}{5} a^{8} + \frac{1}{3} a^{7} + \frac{1}{10} a^{6} - \frac{2}{15} a^{5} + \frac{4}{15} a^{4} - \frac{13}{30} a^{3} + \frac{3}{10} a^{2} - \frac{5}{12} a + \frac{23}{60}$, $\frac{1}{1140} a^{13} + \frac{1}{285} a^{12} - \frac{59}{1140} a^{11} + \frac{211}{1140} a^{10} - \frac{33}{76} a^{9} + \frac{113}{285} a^{8} + \frac{223}{570} a^{7} + \frac{13}{114} a^{6} - \frac{97}{285} a^{5} - \frac{179}{570} a^{4} + \frac{14}{57} a^{3} + \frac{89}{1140} a^{2} + \frac{269}{570} a + \frac{59}{1140}$, $\frac{1}{2280} a^{14} - \frac{3}{380} a^{12} - \frac{11}{380} a^{11} - \frac{313}{2280} a^{10} - \frac{1}{120} a^{9} + \frac{1}{380} a^{8} + \frac{313}{1140} a^{7} - \frac{283}{1140} a^{6} - \frac{67}{380} a^{5} + \frac{43}{285} a^{4} - \frac{233}{2280} a^{3} + \frac{17}{570} a^{2} - \frac{49}{1140} a + \frac{215}{456}$, $\frac{1}{132645265557669922572914350999560} a^{15} + \frac{18409774036117872807250561333}{132645265557669922572914350999560} a^{14} + \frac{25911188038766883661375494013}{66322632778834961286457175499780} a^{13} - \frac{12781484318299866040546592321}{1745332441548288454906767776310} a^{12} + \frac{41513830856387548567272167119}{6981329766193153819627071105240} a^{11} + \frac{35639000508963112409804614825}{6632263277883496128645717549978} a^{10} + \frac{16746719596409009338520501161}{1396265953238630763925414221048} a^{9} - \frac{1417875256456762493290923958834}{5526886064902913440538097958315} a^{8} + \frac{6869956047073469864431270050487}{16580658194708740321614293874945} a^{7} - \frac{1817499853921412773287794111431}{11053772129805826881076195916630} a^{6} + \frac{20450937880656840733440480219631}{66322632778834961286457175499780} a^{5} + \frac{102955645613096911764583309813}{8843017703844661504860956733304} a^{4} + \frac{28944313909738476831480299945131}{132645265557669922572914350999560} a^{3} + \frac{22702627397853683858586180645863}{66322632778834961286457175499780} a^{2} - \frac{33300113696127302318886755585947}{132645265557669922572914350999560} a - \frac{924053320465536283997547317451}{8843017703844661504860956733304}$
Class group and class number
$C_{2}\times C_{18}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9538292.33358 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.0.226981.1, 4.4.48373.1, 4.0.2950753.1, 8.4.24122514952861.1, 8.4.24122514952861.5, 8.0.8706943267009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |