Normalized defining polynomial
\( x^{16} - 2 x^{15} + 33 x^{14} - 128 x^{13} + 689 x^{12} - 2213 x^{11} + 9153 x^{10} - 26156 x^{9} + 80234 x^{8} - 171376 x^{7} + 381852 x^{6} - 583197 x^{5} + 840967 x^{4} - 873606 x^{3} + 787813 x^{2} - 389678 x + 171239 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2165234002589380425486809479441=13^{8}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{10} - \frac{1}{3} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{4}{15} a^{6} - \frac{2}{5} a^{5} - \frac{1}{3} a^{4} - \frac{1}{5} a^{3} + \frac{4}{15} a + \frac{4}{15}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} + \frac{1}{15} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{3} a^{7} + \frac{1}{5} a^{6} + \frac{4}{15} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{3} a^{2} + \frac{4}{15} a + \frac{2}{5}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{4}{15} a^{9} - \frac{1}{15} a^{8} - \frac{4}{15} a^{6} + \frac{1}{3} a^{4} + \frac{7}{15} a^{3} + \frac{1}{15} a^{2} + \frac{2}{15} a - \frac{7}{15}$, $\frac{1}{81573724579864402540760615718933806925} a^{15} + \frac{72745774742433347443179770397491089}{81573724579864402540760615718933806925} a^{14} - \frac{326920563893768479723481534189583158}{81573724579864402540760615718933806925} a^{13} + \frac{221634237504586054829664527784076004}{81573724579864402540760615718933806925} a^{12} + \frac{6936670195177224480247003123921608193}{81573724579864402540760615718933806925} a^{11} + \frac{29935821710498794821163943384360298}{5438248305324293502717374381262253795} a^{10} - \frac{19933290983900217869625795263529667627}{81573724579864402540760615718933806925} a^{9} + \frac{9028157144354068108578238658920562}{81573724579864402540760615718933806925} a^{8} - \frac{10253208496355080722717145258756700459}{81573724579864402540760615718933806925} a^{7} - \frac{1585357815660869200855841637276697183}{16314744915972880508152123143786761385} a^{6} + \frac{5204659595650924727531672708095643494}{27191241526621467513586871906311268975} a^{5} - \frac{7444194362475230677987886681271890704}{16314744915972880508152123143786761385} a^{4} - \frac{4753126317331483249482353274207923278}{81573724579864402540760615718933806925} a^{3} + \frac{36671891266137393214858408141927006111}{81573724579864402540760615718933806925} a^{2} - \frac{729280258628028711199614952734205897}{27191241526621467513586871906311268975} a + \frac{8236879102373172681765179628643706962}{27191241526621467513586871906311268975}$
Class group and class number
$C_{4}\times C_{144}$, which has order $576$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 996723.055385 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), 4.4.48373.1, 4.0.38359789.2, 4.0.2950753.1, 8.4.142736774869.1, 8.4.24122514952861.3, 8.0.1471473412124521.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |