Normalized defining polynomial
\( x^{16} - 6 x^{15} + 11 x^{14} + 12 x^{13} - 79 x^{12} + 124 x^{11} + 8 x^{10} - 32 x^{9} - 687 x^{8} + 934 x^{7} + 1800 x^{6} - 11022 x^{5} + 27126 x^{4} - 37120 x^{3} + 32730 x^{2} - 21280 x + 8105 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21614403506505478515625=5^{10}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{30} a^{12} - \frac{7}{30} a^{11} + \frac{1}{15} a^{10} - \frac{2}{15} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{13}{30} a^{5} - \frac{7}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{30} a^{13} - \frac{1}{15} a^{11} - \frac{1}{6} a^{10} - \frac{2}{15} a^{9} - \frac{1}{10} a^{8} + \frac{11}{30} a^{6} + \frac{1}{15} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{130350} a^{14} + \frac{491}{130350} a^{13} + \frac{416}{65175} a^{12} + \frac{2043}{8690} a^{11} - \frac{10603}{65175} a^{10} - \frac{28553}{130350} a^{9} - \frac{92}{1975} a^{8} + \frac{40427}{130350} a^{7} - \frac{35861}{130350} a^{6} - \frac{2639}{26070} a^{5} + \frac{9017}{43450} a^{4} + \frac{4552}{13035} a^{3} - \frac{1409}{13035} a^{2} + \frac{7901}{26070} a - \frac{3647}{13035}$, $\frac{1}{53970982206478959591750} a^{15} + \frac{80868992297963}{30928929631220034150} a^{14} + \frac{798105772835653011671}{53970982206478959591750} a^{13} - \frac{63438680614708757777}{53970982206478959591750} a^{12} - \frac{1421590336693972107068}{26985491103239479795875} a^{11} - \frac{9622832855417292079577}{53970982206478959591750} a^{10} + \frac{290677884272597004197}{1635484309287241199750} a^{9} + \frac{4453779061973751397867}{26985491103239479795875} a^{8} - \frac{2055327190435562552009}{26985491103239479795875} a^{7} - \frac{380733757100447537152}{26985491103239479795875} a^{6} + \frac{7942406390014929139661}{53970982206478959591750} a^{5} - \frac{4511666351831286533207}{17990327402159653197250} a^{4} + \frac{1604751263029832140574}{5397098220647895959175} a^{3} - \frac{1965620353573501572853}{5397098220647895959175} a^{2} + \frac{92096860534730552849}{431767857651831676734} a + \frac{33695490194903085734}{163548430928724119975}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25802.5997037 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-95}) \), 4.0.1805.1 x2, 4.2.475.1 x2, \(\Q(\sqrt{5}, \sqrt{-19})\), 8.0.147018378125.1 x2, 8.0.29403675625.1 x2, 8.0.81450625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |