Properties

Label 16.0.21614403506...5625.4
Degree $16$
Signature $[0, 8]$
Discriminant $5^{10}\cdot 19^{12}$
Root discriminant $24.88$
Ramified primes $5, 19$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3541, -8087, 6731, -3080, 4783, -7933, 6890, -3856, 2264, -1487, 540, 116, -192, 60, 4, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 4*x^14 + 60*x^13 - 192*x^12 + 116*x^11 + 540*x^10 - 1487*x^9 + 2264*x^8 - 3856*x^7 + 6890*x^6 - 7933*x^5 + 4783*x^4 - 3080*x^3 + 6731*x^2 - 8087*x + 3541)
 
gp: K = bnfinit(x^16 - 6*x^15 + 4*x^14 + 60*x^13 - 192*x^12 + 116*x^11 + 540*x^10 - 1487*x^9 + 2264*x^8 - 3856*x^7 + 6890*x^6 - 7933*x^5 + 4783*x^4 - 3080*x^3 + 6731*x^2 - 8087*x + 3541, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 4 x^{14} + 60 x^{13} - 192 x^{12} + 116 x^{11} + 540 x^{10} - 1487 x^{9} + 2264 x^{8} - 3856 x^{7} + 6890 x^{6} - 7933 x^{5} + 4783 x^{4} - 3080 x^{3} + 6731 x^{2} - 8087 x + 3541 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(21614403506505478515625=5^{10}\cdot 19^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $24.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{14650578950451370633706851} a^{15} + \frac{4272751579554900203601560}{14650578950451370633706851} a^{14} + \frac{1233200669694005768185890}{14650578950451370633706851} a^{13} - \frac{7185883842913799310696080}{14650578950451370633706851} a^{12} - \frac{3694306904586530088253028}{14650578950451370633706851} a^{11} + \frac{354302173833882435247300}{861798761791257096100403} a^{10} - \frac{6795853481011321843730642}{14650578950451370633706851} a^{9} - \frac{1659554702227006202649873}{14650578950451370633706851} a^{8} - \frac{1010011043771608532638833}{14650578950451370633706851} a^{7} - \frac{7115473113160153651662899}{14650578950451370633706851} a^{6} + \frac{4545519578679289647172178}{14650578950451370633706851} a^{5} + \frac{308968742007188311525764}{14650578950451370633706851} a^{4} - \frac{5023125479319937129505156}{14650578950451370633706851} a^{3} - \frac{795698280917373237730849}{14650578950451370633706851} a^{2} + \frac{2304894638706178174407537}{14650578950451370633706851} a + \frac{4158216907017413102591622}{14650578950451370633706851}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7468.3740566 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{-19}) \), 4.0.1805.1, 8.0.16290125.1, 8.0.147018378125.2, 8.0.29403675625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$19$19.8.6.2$x^{8} - 19 x^{4} + 5776$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
19.8.6.2$x^{8} - 19 x^{4} + 5776$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$