Normalized defining polynomial
\( x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1125 x^{12} - 3474 x^{11} + 8917 x^{10} - 18460 x^{9} + 30350 x^{8} - 39130 x^{7} + 38607 x^{6} - 28376 x^{5} + 27740 x^{4} - 30880 x^{3} + 3440 x^{2} + 10368 x + 9216 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2159514057650567877197265625=5^{14}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{20} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5} + \frac{1}{10} a^{3} - \frac{3}{20} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{20} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{4} - \frac{1}{4} a^{3} + \frac{1}{10} a^{2} + \frac{1}{10} a + \frac{1}{5}$, $\frac{1}{80} a^{10} - \frac{1}{80} a^{9} + \frac{7}{40} a^{7} - \frac{1}{5} a^{6} + \frac{1}{40} a^{5} + \frac{13}{80} a^{4} - \frac{3}{16} a^{3} - \frac{1}{40} a^{2} - \frac{3}{20} a$, $\frac{1}{400} a^{11} + \frac{1}{200} a^{10} + \frac{1}{80} a^{9} - \frac{1}{40} a^{8} - \frac{3}{40} a^{7} + \frac{37}{200} a^{6} + \frac{83}{400} a^{5} - \frac{1}{10} a^{4} - \frac{7}{16} a^{3} - \frac{9}{40} a^{2} + \frac{21}{100} a - \frac{2}{25}$, $\frac{1}{2400} a^{12} - \frac{3}{800} a^{10} - \frac{1}{48} a^{9} - \frac{1}{240} a^{8} - \frac{223}{1200} a^{7} - \frac{29}{480} a^{6} + \frac{47}{1200} a^{5} - \frac{7}{160} a^{4} + \frac{7}{80} a^{3} - \frac{49}{600} a^{2} + \frac{13}{30} a - \frac{1}{25}$, $\frac{1}{2400} a^{13} - \frac{1}{800} a^{11} - \frac{1}{300} a^{10} - \frac{1}{240} a^{9} - \frac{13}{1200} a^{8} + \frac{23}{96} a^{7} - \frac{91}{1200} a^{6} - \frac{169}{800} a^{5} + \frac{3}{20} a^{4} + \frac{29}{150} a^{3} - \frac{5}{12} a^{2} - \frac{9}{50} a + \frac{3}{25}$, $\frac{1}{48000} a^{14} - \frac{7}{48000} a^{13} + \frac{3}{16000} a^{12} + \frac{37}{48000} a^{11} + \frac{83}{24000} a^{10} + \frac{133}{6000} a^{9} + \frac{877}{48000} a^{8} - \frac{4399}{48000} a^{7} + \frac{5363}{48000} a^{6} + \frac{2463}{16000} a^{5} + \frac{157}{1500} a^{4} + \frac{1361}{4000} a^{3} - \frac{281}{750} a^{2} - \frac{489}{1000} a - \frac{29}{125}$, $\frac{1}{55248000} a^{15} + \frac{71}{6906000} a^{14} + \frac{43}{6906000} a^{13} - \frac{9}{4604000} a^{12} + \frac{11867}{18416000} a^{11} + \frac{60397}{27624000} a^{10} + \frac{411759}{18416000} a^{9} + \frac{36743}{4604000} a^{8} - \frac{593971}{27624000} a^{7} - \frac{1965341}{9208000} a^{6} + \frac{2988019}{55248000} a^{5} + \frac{2257933}{13812000} a^{4} + \frac{1898913}{4604000} a^{3} - \frac{114311}{1726500} a^{2} - \frac{1247831}{3453000} a - \frac{10829}{28775}$
Class group and class number
$C_{4}\times C_{24}$, which has order $96$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5930917.41967 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), 4.4.3048625.2, 4.0.105125.1, 4.0.609725.1, 8.0.1602433515625.2, 8.0.1602433515625.1, 8.0.9294114390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |