Normalized defining polynomial
\( x^{16} - 8 x^{15} + 100 x^{14} - 560 x^{13} + 4186 x^{12} - 18200 x^{11} + 101264 x^{10} - 351880 x^{9} + 1570905 x^{8} - 4351376 x^{7} + 16097276 x^{6} - 34361912 x^{5} + 106654352 x^{4} - 160500584 x^{3} + 418672980 x^{2} - 343516544 x + 745807489 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21585269445983519741468649455616=2^{48}\cdot 3^{8}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2064=2^{4}\cdot 3\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2064}(1,·)$, $\chi_{2064}(515,·)$, $\chi_{2064}(517,·)$, $\chi_{2064}(1031,·)$, $\chi_{2064}(1033,·)$, $\chi_{2064}(1547,·)$, $\chi_{2064}(1549,·)$, $\chi_{2064}(2063,·)$, $\chi_{2064}(85,·)$, $\chi_{2064}(601,·)$, $\chi_{2064}(1117,·)$, $\chi_{2064}(1633,·)$, $\chi_{2064}(431,·)$, $\chi_{2064}(947,·)$, $\chi_{2064}(1463,·)$, $\chi_{2064}(1979,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{111482369236598504473} a^{14} - \frac{1}{15926052748085500639} a^{13} + \frac{35798223975911111759}{111482369236598504473} a^{12} + \frac{8175394617730338483}{111482369236598504473} a^{11} + \frac{47255923522030406773}{111482369236598504473} a^{10} - \frac{51095206720616959689}{111482369236598504473} a^{9} - \frac{45732506868097428361}{111482369236598504473} a^{8} + \frac{3145537486876096116}{15926052748085500639} a^{7} - \frac{4951066255675920077}{15926052748085500639} a^{6} + \frac{23379910857920974545}{111482369236598504473} a^{5} + \frac{5533839188804212795}{111482369236598504473} a^{4} - \frac{7253320601936072250}{111482369236598504473} a^{3} + \frac{32223845367194337942}{111482369236598504473} a^{2} - \frac{35647401957342154264}{111482369236598504473} a - \frac{670527225833997700}{15926052748085500639}$, $\frac{1}{735671374215728874827795689} a^{15} + \frac{3299489}{735671374215728874827795689} a^{14} + \frac{307124152596560035042736663}{735671374215728874827795689} a^{13} + \frac{328823245484281194115401124}{735671374215728874827795689} a^{12} + \frac{146202224452488251906468543}{735671374215728874827795689} a^{11} - \frac{242759336333177191930786164}{735671374215728874827795689} a^{10} + \frac{61993852836778140633194985}{735671374215728874827795689} a^{9} + \frac{128554082725745186269052463}{735671374215728874827795689} a^{8} + \frac{49865690810176421982272142}{105095910602246982118256527} a^{7} - \frac{187159602877336805505443004}{735671374215728874827795689} a^{6} - \frac{306370242756455051583592280}{735671374215728874827795689} a^{5} + \frac{24240306022878004319032179}{105095910602246982118256527} a^{4} + \frac{51945305990330325058183094}{735671374215728874827795689} a^{3} - \frac{132691215619854201131305639}{735671374215728874827795689} a^{2} + \frac{95253774723874556872624466}{735671374215728874827795689} a + \frac{2818113017183724940783255}{6182112388367469536368031}$
Class group and class number
$C_{5}\times C_{20400}$, which has order $102000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |