Normalized defining polynomial
\( x^{16} - 6 x^{15} + 17 x^{14} - 30 x^{13} + 38 x^{12} - 48 x^{11} + 89 x^{10} - 168 x^{9} + 217 x^{8} - 156 x^{7} + 7 x^{6} + 72 x^{5} - 10 x^{4} - 30 x^{3} + 7 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(215212989780710129664=2^{24}\cdot 3^{12}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} + \frac{6}{19} a^{13} + \frac{3}{19} a^{12} + \frac{3}{19} a^{11} + \frac{6}{19} a^{10} - \frac{6}{19} a^{9} - \frac{5}{19} a^{8} + \frac{3}{19} a^{7} - \frac{1}{19} a^{6} - \frac{8}{19} a^{5} - \frac{3}{19} a^{4} + \frac{2}{19} a^{3} + \frac{6}{19} a^{2} + \frac{3}{19} a + \frac{2}{19}$, $\frac{1}{301670467} a^{15} - \frac{6904906}{301670467} a^{14} + \frac{65340651}{301670467} a^{13} + \frac{84084023}{301670467} a^{12} - \frac{139754385}{301670467} a^{11} - \frac{105358208}{301670467} a^{10} + \frac{143954740}{301670467} a^{9} + \frac{6241125}{301670467} a^{8} + \frac{139577889}{301670467} a^{7} - \frac{1031992}{15877393} a^{6} + \frac{31866424}{301670467} a^{5} + \frac{29958808}{301670467} a^{4} + \frac{137708684}{301670467} a^{3} + \frac{95878401}{301670467} a^{2} + \frac{88780385}{301670467} a + \frac{17121948}{301670467}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4550566}{15877393} a^{15} + \frac{28503726}{15877393} a^{14} - \frac{85258672}{15877393} a^{13} + \frac{159814846}{15877393} a^{12} - \frac{215546668}{15877393} a^{11} + \frac{274171929}{15877393} a^{10} - \frac{476146504}{15877393} a^{9} + \frac{892881222}{15877393} a^{8} - \frac{1230524264}{15877393} a^{7} + \frac{1033812086}{15877393} a^{6} - \frac{288813754}{15877393} a^{5} - \frac{266887560}{15877393} a^{4} + \frac{111654460}{15877393} a^{3} + \frac{146214876}{15877393} a^{2} - \frac{69712404}{15877393} a - \frac{11217209}{15877393} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13426.5980282 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-6}) \), 4.4.9792.1, 4.0.1088.2, \(\Q(\sqrt{2}, \sqrt{-3})\), 8.4.14670139392.1, 8.4.14670139392.2, 8.0.95883264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |