Properties

Label 16.0.21393065423...8288.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{67}\cdot 7^{2}\cdot 17^{6}\cdot 11071^{2}$
Root discriminant $215.35$
Ramified primes $2, 7, 17, 11071$
Class number $24028416$ (GRH)
Class group $[2, 2, 2, 2, 1501776]$ (GRH)
Galois group 16T1113

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3471343735202, 0, 1420420813840, 0, 205334750052, 0, 13450643240, 0, 456984038, 0, 8569912, 0, 88780, 0, 472, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 472*x^14 + 88780*x^12 + 8569912*x^10 + 456984038*x^8 + 13450643240*x^6 + 205334750052*x^4 + 1420420813840*x^2 + 3471343735202)
 
gp: K = bnfinit(x^16 + 472*x^14 + 88780*x^12 + 8569912*x^10 + 456984038*x^8 + 13450643240*x^6 + 205334750052*x^4 + 1420420813840*x^2 + 3471343735202, 1)
 

Normalized defining polynomial

\( x^{16} + 472 x^{14} + 88780 x^{12} + 8569912 x^{10} + 456984038 x^{8} + 13450643240 x^{6} + 205334750052 x^{4} + 1420420813840 x^{2} + 3471343735202 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(21393065423814767306817757436903948288=2^{67}\cdot 7^{2}\cdot 17^{6}\cdot 11071^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $215.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 17, 11071$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{10} - \frac{3}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{3}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{2343197010653074124796798686633678585321} a^{14} - \frac{86593489284293478604323882852871023377}{2343197010653074124796798686633678585321} a^{12} - \frac{421771715170546232913281876566061387985}{2343197010653074124796798686633678585321} a^{10} - \frac{97593609474573200164395733641460905953}{334742430093296303542399812376239797903} a^{8} + \frac{7638593258721495096037089626954570172}{19690731181958606090729400728014105759} a^{6} - \frac{757555186043215340668823879098006684533}{2343197010653074124796798686633678585321} a^{4} - \frac{44529765688488733543776058614613209742}{334742430093296303542399812376239797903} a^{2} + \frac{636499753763125510789526043462421}{1778586503654467174666191015085729}$, $\frac{1}{2343197010653074124796798686633678585321} a^{15} - \frac{86593489284293478604323882852871023377}{2343197010653074124796798686633678585321} a^{13} - \frac{421771715170546232913281876566061387985}{2343197010653074124796798686633678585321} a^{11} - \frac{97593609474573200164395733641460905953}{334742430093296303542399812376239797903} a^{9} + \frac{7638593258721495096037089626954570172}{19690731181958606090729400728014105759} a^{7} - \frac{757555186043215340668823879098006684533}{2343197010653074124796798686633678585321} a^{5} - \frac{44529765688488733543776058614613209742}{334742430093296303542399812376239797903} a^{3} + \frac{636499753763125510789526043462421}{1778586503654467174666191015085729} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1501776}$, which has order $24028416$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 42439.7060581 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1113:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 49 conjugacy class representatives for t16n1113
Character table for t16n1113 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ R $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ $16$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ $16$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.8.0.1$x^{8} - x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
$17$17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11071Data not computed