Normalized defining polynomial
\( x^{16} - 4 x^{14} - 38 x^{13} + 163 x^{12} + 2904 x^{11} + 11016 x^{10} - 14346 x^{9} - 26204 x^{8} + 328526 x^{7} - 127400 x^{6} - 812470 x^{5} + 2172477 x^{4} - 1095064 x^{3} + 1738888 x^{2} - 846456 x + 682568 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21367369203669531951904323534848=2^{24}\cdot 2777^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{837138303868467257612591105227516907865192784279189492} a^{15} - \frac{26661024657235310305700672327481446946483337925951829}{418569151934233628806295552613758453932596392139594746} a^{14} - \frac{251961279119497551864770386091107351539868211499446}{9099329389874644104484685926386053346360791133469451} a^{13} - \frac{37561238118817225923837575620964758061923175855971811}{418569151934233628806295552613758453932596392139594746} a^{12} + \frac{303465803987418209716084460779764982935106189737043375}{837138303868467257612591105227516907865192784279189492} a^{11} - \frac{17651814751695258434738755391043805823131128501551633}{418569151934233628806295552613758453932596392139594746} a^{10} + \frac{49466534057759911406107161423609929965782982041344751}{209284575967116814403147776306879226966298196069797373} a^{9} + \frac{115213431103863600801945546854032833990588675819850103}{418569151934233628806295552613758453932596392139594746} a^{8} + \frac{104630657027256354912780933238189557003494869345245221}{209284575967116814403147776306879226966298196069797373} a^{7} - \frac{165300015775187726783987966616865664943257624624965445}{418569151934233628806295552613758453932596392139594746} a^{6} + \frac{31349865809127647326592025936125809865460510733599238}{209284575967116814403147776306879226966298196069797373} a^{5} - \frac{188991935637932950489311331266207575864159234518509157}{418569151934233628806295552613758453932596392139594746} a^{4} + \frac{64939783268431563190209295329934890904750399941285909}{837138303868467257612591105227516907865192784279189492} a^{3} - \frac{149374734547639914664916137114414240382133424381946659}{418569151934233628806295552613758453932596392139594746} a^{2} + \frac{2744400922498049180619425280697858143979001366307668}{9099329389874644104484685926386053346360791133469451} a + \frac{57564174631086132414482059094554441999610127494135105}{209284575967116814403147776306879226966298196069797373}$
Class group and class number
$C_{2}\times C_{880}$, which has order $1760$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1177443.7333 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 41 conjugacy class representatives for t16n1691 |
| Character table for t16n1691 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.5482360686848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.18.43 | $x^{12} + 8 x^{11} + 4 x^{10} - 4 x^{7} - 4 x^{6} + 8 x^{5} + 4 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 2777 | Data not computed | ||||||