Normalized defining polynomial
\( x^{16} + 358 x^{14} - 156 x^{13} + 45729 x^{12} - 23504 x^{11} + 2585058 x^{10} - 599248 x^{9} + 73676772 x^{8} + 9111128 x^{7} + 1089726432 x^{6} + 539705140 x^{5} + 7851350618 x^{4} + 7498045776 x^{3} + 24982140462 x^{2} + 39039125944 x + 59243323961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(213599481601886546978406400000000=2^{32}\cdot 5^{8}\cdot 13^{10}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{403} a^{12} + \frac{85}{403} a^{11} - \frac{58}{403} a^{10} + \frac{184}{403} a^{9} + \frac{168}{403} a^{8} + \frac{5}{13} a^{7} - \frac{11}{31} a^{6} - \frac{46}{403} a^{5} + \frac{55}{403} a^{4} - \frac{94}{403} a^{3} - \frac{119}{403} a^{2} + \frac{12}{403} a - \frac{157}{403}$, $\frac{1}{403} a^{13} - \frac{29}{403} a^{11} - \frac{125}{403} a^{10} - \frac{158}{403} a^{9} - \frac{20}{403} a^{8} - \frac{19}{403} a^{7} + \frac{19}{403} a^{6} - \frac{5}{31} a^{5} + \frac{67}{403} a^{4} - \frac{189}{403} a^{3} + \frac{4}{31} a^{2} + \frac{32}{403} a + \frac{46}{403}$, $\frac{1}{403} a^{14} - \frac{6}{31} a^{11} + \frac{175}{403} a^{10} + \frac{77}{403} a^{9} + \frac{17}{403} a^{8} + \frac{81}{403} a^{7} - \frac{14}{31} a^{6} - \frac{58}{403} a^{5} + \frac{197}{403} a^{4} + \frac{147}{403} a^{3} - \frac{15}{31} a^{2} - \frac{9}{403} a - \frac{120}{403}$, $\frac{1}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{15} - \frac{4607868555051823881395803274499318151875346039881419178356115067522190}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{14} + \frac{2616344445582305080069597162455647684788525534344769511402402493817317}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{13} + \frac{4857779884912697907124412866664800962529622269371061088487701291540692}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{12} + \frac{444136740971389308551495824251217791839766333293727568360870470082892375}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{11} + \frac{834665984820097731370864250560852182819340839136878146305786931228476957}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{10} + \frac{1727894330322213909532348605233634651251672594503191099951856171130494313}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{9} - \frac{545244119445070951586731156915921166172127827546846598168726924205368701}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{8} + \frac{1361777693291255821378016889938372449975777566235147490286688716492284427}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{7} - \frac{1293835736872361168926828251795491412296499695981912557597037797056906730}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{6} + \frac{561105944781982269097209985798101690526169871015765961812384009089135594}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{5} - \frac{1050909604789774905100937009739436409306950936206025324581050479758207977}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{4} - \frac{94880572485426566497917175023910263448248273642362268074238420379551181}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{3} - \frac{330813116145652021380978451803472943591838233572914994944581974140572495}{4372516973578926303456222779055104456441640534312444036495229720673860519} a^{2} + \frac{1336573475560858545773271582958993621006733816526393108509518153964214540}{4372516973578926303456222779055104456441640534312444036495229720673860519} a + \frac{50251334444446461526353608043504049958365704499210520759049333918983897}{106646755453144543986737140952563523327844891080791317963298285870094159}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{31588}$, which has order $505408$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3710.59482488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).C_2^4$ (as 16T205):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $(C_2\times C_4).C_2^4$ |
| Character table for $(C_2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.432640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 13.8.4.2 | $x^{8} + 169 x^{4} - 2197 x^{2} + 57122$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |