Normalized defining polynomial
\( x^{16} - 6 x^{15} + 22 x^{14} - 18 x^{13} - 119 x^{12} + 431 x^{11} - 673 x^{10} + 567 x^{9} + 1117 x^{8} - 6372 x^{7} + 15258 x^{6} - 22650 x^{5} + 21474 x^{4} - 6357 x^{3} - 4247 x^{2} + 1838 x + 857 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2128929593223415400006494769=37^{2}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{118} a^{14} + \frac{14}{59} a^{13} - \frac{23}{118} a^{12} + \frac{17}{118} a^{11} - \frac{33}{118} a^{10} + \frac{1}{118} a^{9} - \frac{11}{118} a^{8} - \frac{37}{118} a^{7} + \frac{29}{118} a^{6} + \frac{28}{59} a^{5} - \frac{5}{59} a^{4} - \frac{57}{118} a^{3} + \frac{3}{59} a^{2} - \frac{5}{118} a - \frac{15}{118}$, $\frac{1}{31215732542464748022194131954} a^{15} + \frac{14667164748989277532536792}{15607866271232374011097065977} a^{14} - \frac{5906098112690965360487177443}{31215732542464748022194131954} a^{13} + \frac{7720241019044751035475002423}{31215732542464748022194131954} a^{12} - \frac{10547892373831408061411553107}{31215732542464748022194131954} a^{11} - \frac{2571784438810524175081506707}{31215732542464748022194131954} a^{10} + \frac{451347814291195255987400081}{1006959114273056387812713934} a^{9} - \frac{9144982035586952089786694321}{31215732542464748022194131954} a^{8} + \frac{10172851436378086935119934695}{31215732542464748022194131954} a^{7} + \frac{4772353339487923558958879473}{15607866271232374011097065977} a^{6} - \frac{3301336591563431974465685466}{15607866271232374011097065977} a^{5} - \frac{10946649778525172106311227627}{31215732542464748022194131954} a^{4} + \frac{530726541569699314732749154}{15607866271232374011097065977} a^{3} - \frac{14148789437039364701986962909}{31215732542464748022194131954} a^{2} - \frac{1394841612144934810640562349}{31215732542464748022194131954} a + \frac{7358536685271163302791204173}{15607866271232374011097065977}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6156962.26717 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41 | Data not computed | ||||||