Normalized defining polynomial
\( x^{16} - 8 x^{15} + 260 x^{14} - 1680 x^{13} + 27290 x^{12} - 142264 x^{11} + 1482352 x^{10} - 6146760 x^{9} + 44663097 x^{8} - 143269808 x^{7} + 767003836 x^{6} - 1823888920 x^{5} + 8014040880 x^{4} - 13143868456 x^{3} + 48544576244 x^{2} - 42254476064 x + 123000632449 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21078441977020355377207705600000000=2^{48}\cdot 5^{8}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4880=2^{4}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(1219,·)$, $\chi_{4880}(1221,·)$, $\chi_{4880}(2439,·)$, $\chi_{4880}(2441,·)$, $\chi_{4880}(3659,·)$, $\chi_{4880}(3661,·)$, $\chi_{4880}(4879,·)$, $\chi_{4880}(731,·)$, $\chi_{4880}(1951,·)$, $\chi_{4880}(3171,·)$, $\chi_{4880}(4391,·)$, $\chi_{4880}(489,·)$, $\chi_{4880}(1709,·)$, $\chi_{4880}(2929,·)$, $\chi_{4880}(4149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{15841} a^{8} - \frac{4}{15841} a^{7} + \frac{1036}{2263} a^{6} - \frac{843}{2263} a^{5} + \frac{437}{2263} a^{4} - \frac{224}{2263} a^{3} - \frac{5193}{15841} a^{2} + \frac{2354}{15841} a - \frac{2054}{15841}$, $\frac{1}{15841} a^{9} + \frac{447}{15841} a^{7} + \frac{1038}{2263} a^{6} - \frac{672}{2263} a^{5} - \frac{739}{2263} a^{4} + \frac{4376}{15841} a^{3} - \frac{2577}{15841} a^{2} + \frac{573}{15841} a - \frac{1427}{15841}$, $\frac{1}{15841} a^{10} + \frac{2}{15841} a^{7} + \frac{151}{2263} a^{6} + \frac{424}{2263} a^{5} - \frac{671}{15841} a^{4} + \frac{1315}{15841} a^{3} - \frac{969}{2263} a^{2} - \frac{1370}{15841} a - \frac{7429}{15841}$, $\frac{1}{110887} a^{11} - \frac{2}{110887} a^{10} + \frac{3}{110887} a^{9} - \frac{2}{110887} a^{8} + \frac{4673}{110887} a^{7} - \frac{908}{15841} a^{6} + \frac{50408}{110887} a^{5} + \frac{22425}{110887} a^{4} - \frac{5854}{110887} a^{3} + \frac{9396}{110887} a^{2} + \frac{5718}{110887} a + \frac{16530}{110887}$, $\frac{1}{110887} a^{12} - \frac{1}{110887} a^{10} - \frac{3}{110887} a^{9} + \frac{2696}{110887} a^{7} - \frac{52219}{110887} a^{6} - \frac{13812}{110887} a^{5} - \frac{13728}{110887} a^{4} - \frac{30494}{110887} a^{3} + \frac{4413}{110887} a^{2} - \frac{4899}{110887} a + \frac{1847}{110887}$, $\frac{1}{110887} a^{13} + \frac{2}{110887} a^{10} + \frac{3}{110887} a^{9} - \frac{1}{110887} a^{8} - \frac{5070}{110887} a^{7} - \frac{40797}{110887} a^{6} - \frac{1011}{15841} a^{5} - \frac{51133}{110887} a^{4} + \frac{19818}{110887} a^{3} - \frac{19611}{110887} a^{2} + \frac{6186}{110887} a + \frac{34912}{110887}$, $\frac{1}{11934331935659724353} a^{14} - \frac{1}{1704904562237103479} a^{13} - \frac{2130490067753}{11934331935659724353} a^{12} + \frac{751937670977}{702019525627042609} a^{11} + \frac{203853142591393}{11934331935659724353} a^{10} + \frac{3111952118915}{100288503661006087} a^{9} + \frac{102818519980356}{11934331935659724353} a^{8} + \frac{680071935334021749}{11934331935659724353} a^{7} + \frac{1997296413035854023}{11934331935659724353} a^{6} - \frac{590249197803974805}{1704904562237103479} a^{5} - \frac{4498930224391006566}{11934331935659724353} a^{4} + \frac{3041880678800884717}{11934331935659724353} a^{3} - \frac{109976108465414952}{518883997202596711} a^{2} + \frac{5755102308624122718}{11934331935659724353} a + \frac{41535334303538977}{151067492856452207}$, $\frac{1}{20942950462960531621137697} a^{15} + \frac{877417}{20942950462960531621137697} a^{14} - \frac{58141326730804213825}{20942950462960531621137697} a^{13} - \frac{73292185226443663}{910563063606979635701639} a^{12} + \frac{3511527514401156437}{20942950462960531621137697} a^{11} + \frac{408088335173145136274}{20942950462960531621137697} a^{10} + \frac{607247918002784587737}{20942950462960531621137697} a^{9} + \frac{31090823510744969444}{20942950462960531621137697} a^{8} + \frac{674796702457989593218930}{20942950462960531621137697} a^{7} - \frac{2753856990864004876174208}{20942950462960531621137697} a^{6} - \frac{4154667257069337424778209}{20942950462960531621137697} a^{5} + \frac{6830944621220336931566592}{20942950462960531621137697} a^{4} - \frac{2342673817966457977074729}{20942950462960531621137697} a^{3} - \frac{2351690751413777036621709}{20942950462960531621137697} a^{2} + \frac{278065137070728514652906}{675579047192275213585087} a + \frac{68969291854400690899200}{265100638771652299001743}$
Class group and class number
$C_{6}\times C_{605280}$, which has order $3631680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |