Normalized defining polynomial
\( x^{16} - 4 x^{15} + 56 x^{14} - 182 x^{13} + 1092 x^{12} - 3072 x^{11} + 9994 x^{10} - 20362 x^{9} + 40781 x^{8} - 34526 x^{7} + 13090 x^{6} + 38884 x^{5} + 15301 x^{4} - 14428 x^{3} + 40421 x^{2} + 9424 x + 27869 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2106797133618518949609765625=5^{8}\cdot 149^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{10} a^{6} - \frac{3}{10} a^{4} - \frac{3}{10} a^{3} + \frac{1}{10} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{3}{10}$, $\frac{1}{580} a^{12} - \frac{23}{580} a^{11} - \frac{13}{580} a^{10} - \frac{13}{116} a^{9} + \frac{3}{290} a^{8} - \frac{233}{580} a^{7} - \frac{69}{145} a^{6} + \frac{177}{580} a^{5} + \frac{15}{58} a^{4} - \frac{121}{580} a^{3} - \frac{99}{580} a^{2} + \frac{14}{29} a - \frac{3}{20}$, $\frac{1}{580} a^{13} - \frac{1}{29} a^{11} - \frac{4}{145} a^{10} + \frac{19}{580} a^{9} + \frac{137}{580} a^{8} - \frac{9}{580} a^{7} + \frac{93}{580} a^{6} - \frac{49}{116} a^{5} - \frac{209}{580} a^{4} - \frac{68}{145} a^{3} + \frac{207}{580} a^{2} - \frac{259}{580} a - \frac{1}{4}$, $\frac{1}{259260} a^{14} + \frac{1}{12963} a^{13} + \frac{47}{129630} a^{12} + \frac{5557}{129630} a^{11} - \frac{1679}{51852} a^{10} + \frac{10523}{51852} a^{9} + \frac{48017}{259260} a^{8} + \frac{106867}{259260} a^{7} - \frac{5091}{17284} a^{6} + \frac{16391}{86420} a^{5} + \frac{8683}{25926} a^{4} - \frac{66587}{259260} a^{3} - \frac{19617}{86420} a^{2} + \frac{99733}{259260} a + \frac{913}{2235}$, $\frac{1}{7144815059150776069717353900} a^{15} - \frac{3177824898982281887977}{2381605019716925356572451300} a^{14} + \frac{32661543653769191215831}{2381605019716925356572451300} a^{13} - \frac{227480737479672623658074}{595401254929231339143112825} a^{12} + \frac{33334431755509721616859243}{7144815059150776069717353900} a^{11} - \frac{24630251457750015898499139}{595401254929231339143112825} a^{10} - \frac{1899593826404732270533331}{476321003943385071314490260} a^{9} + \frac{7979145492595558943933879}{82124311024721564019739700} a^{8} - \frac{456934757213455082393661133}{1428963011830155213943470780} a^{7} + \frac{998655854590016192084500993}{2381605019716925356572451300} a^{6} - \frac{544058097145782450612992899}{3572407529575388034858676950} a^{5} - \frac{356104756943062141260583279}{714481505915077606971735390} a^{4} + \frac{287395586405328971357657269}{1786203764787694017429338475} a^{3} + \frac{435964302515928406487002187}{1428963011830155213943470780} a^{2} + \frac{271577043383761270151831293}{595401254929231339143112825} a + \frac{1673883843180029906407393}{7947513970134344905136100}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14811624.1093 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{745}) \), \(\Q(\sqrt{149}) \), \(\Q(\sqrt{5}) \), 4.0.3725.1 x2, \(\Q(\sqrt{5}, \sqrt{149})\), 4.0.111005.1 x2, 8.0.308052750625.2 x2, 8.4.45899859843125.1 x2, 8.0.308052750625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149 | Data not computed | ||||||