Normalized defining polynomial
\( x^{16} - 2 x^{15} - 2 x^{14} - 66 x^{13} + 145 x^{12} + 158 x^{11} + 71 x^{10} - 7146 x^{9} + 110277 x^{8} - 608662 x^{7} + 1780247 x^{6} - 3845538 x^{5} + 7004864 x^{4} - 9260696 x^{3} + 7860421 x^{2} - 4451244 x + 1532768 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20974934542740813230114132554789=19^{7}\cdot 31^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{9} - \frac{1}{48} a^{8} - \frac{1}{4} a^{6} + \frac{1}{16} a^{4} + \frac{3}{16} a^{3} - \frac{19}{48} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{48} a^{11} - \frac{1}{24} a^{9} - \frac{1}{48} a^{8} - \frac{1}{4} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{5}{24} a^{3} + \frac{7}{16} a^{2} + \frac{5}{12} a + \frac{1}{3}$, $\frac{1}{192} a^{12} - \frac{1}{96} a^{11} + \frac{1}{192} a^{10} + \frac{1}{48} a^{9} - \frac{1}{192} a^{8} - \frac{3}{64} a^{6} + \frac{1}{32} a^{5} - \frac{25}{192} a^{4} - \frac{1}{3} a^{3} + \frac{89}{192} a^{2} + \frac{5}{48} a - \frac{1}{6}$, $\frac{1}{576} a^{13} + \frac{5}{576} a^{11} + \frac{1}{288} a^{10} - \frac{5}{576} a^{9} - \frac{11}{288} a^{8} - \frac{1}{64} a^{7} + \frac{11}{48} a^{6} + \frac{107}{576} a^{5} + \frac{11}{96} a^{4} - \frac{155}{576} a^{3} - \frac{43}{288} a^{2} - \frac{35}{72} a + \frac{4}{9}$, $\frac{1}{65664} a^{14} + \frac{13}{65664} a^{13} + \frac{7}{8208} a^{12} + \frac{19}{3456} a^{11} + \frac{13}{1368} a^{10} - \frac{89}{21888} a^{9} - \frac{935}{32832} a^{8} - \frac{1819}{21888} a^{7} - \frac{1351}{16416} a^{6} - \frac{3673}{65664} a^{5} - \frac{1277}{16416} a^{4} + \frac{10619}{65664} a^{3} - \frac{3421}{21888} a^{2} - \frac{25}{96} a + \frac{41}{108}$, $\frac{1}{7998307200702797042344235904} a^{15} + \frac{8864242353943133462399}{1999576800175699260586058976} a^{14} + \frac{15885943211464593726313}{296233600026029520086823552} a^{13} + \frac{370820210916322867365259}{296233600026029520086823552} a^{12} + \frac{71171994228098581182872167}{7998307200702797042344235904} a^{11} + \frac{1088202772605106005348467}{205084800018020436983185536} a^{10} + \frac{209369174656888758672051053}{7998307200702797042344235904} a^{9} + \frac{212668424201687696809868597}{7998307200702797042344235904} a^{8} + \frac{2733021851006271221251531}{22279407244297484797616256} a^{7} - \frac{36167272249216329274119961}{275803696575958518701525376} a^{6} - \frac{220909176126179531256563107}{888700800078088560260470656} a^{5} - \frac{573646966667609056367386939}{2666102400234265680781411968} a^{4} + \frac{1415874403094365305749911231}{3999153600351398521172117952} a^{3} + \frac{1035504332720029358236659329}{2666102400234265680781411968} a^{2} + \frac{23655588989585928759989617}{105240884219773645294003104} a - \frac{4946154892752039299905129}{13155110527471705661750388}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22232425610.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.566029.1, 8.0.188709020187349.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31 | Data not computed | ||||||