Normalized defining polynomial
\( x^{16} - 3 x^{15} + 26 x^{14} - 61 x^{13} + 302 x^{12} - 481 x^{11} + 1800 x^{10} - 1694 x^{9} + 6221 x^{8} - 1408 x^{7} + 12724 x^{6} + 4447 x^{5} + 29261 x^{4} + 14047 x^{3} + 63157 x^{2} + 36221 x + 38659 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20928938182187993309151488=2^{8}\cdot 13^{4}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{214707790924328667108242609799974101} a^{15} + \frac{75400069108543266125190828056387955}{214707790924328667108242609799974101} a^{14} - \frac{13144986065699827824899712058159620}{214707790924328667108242609799974101} a^{13} + \frac{66796799251570995484248220910163919}{214707790924328667108242609799974101} a^{12} + \frac{78212170340871826315801616027167013}{214707790924328667108242609799974101} a^{11} + \frac{50132173732741653469053841112551989}{214707790924328667108242609799974101} a^{10} + \frac{98519230305286593096941664693393160}{214707790924328667108242609799974101} a^{9} + \frac{94297321530362689183345178986734122}{214707790924328667108242609799974101} a^{8} + \frac{28561293920079046057248350676202868}{214707790924328667108242609799974101} a^{7} - \frac{29522122292032831719465532699180615}{214707790924328667108242609799974101} a^{6} + \frac{57846959451099931659558431749937447}{214707790924328667108242609799974101} a^{5} - \frac{10775357290939403731811744204094021}{214707790924328667108242609799974101} a^{4} - \frac{22997979474704512809573781523946127}{214707790924328667108242609799974101} a^{3} + \frac{104025610770156931413549997341478576}{214707790924328667108242609799974101} a^{2} + \frac{89639845629708211913454147562383593}{214707790924328667108242609799974101} a - \frac{73911116025651699633154933751108674}{214707790924328667108242609799974101}$
Class group and class number
$C_{2}\times C_{2}\times C_{50}$, which has order $200$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||