Normalized defining polynomial
\( x^{16} - 6 x^{15} + 14 x^{14} - 12 x^{13} - 8 x^{12} - 3 x^{11} + 29 x^{10} - 36 x^{9} + 298 x^{8} - 36 x^{7} + 29 x^{6} - 3 x^{5} - 8 x^{4} - 12 x^{3} + 14 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2092483243792415845449=3^{12}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{30} a^{12} - \frac{1}{15} a^{11} + \frac{1}{10} a^{10} + \frac{2}{15} a^{8} - \frac{13}{30} a^{7} + \frac{2}{5} a^{6} + \frac{7}{30} a^{5} - \frac{1}{5} a^{4} + \frac{13}{30} a^{2} + \frac{4}{15} a + \frac{11}{30}$, $\frac{1}{240} a^{13} - \frac{1}{60} a^{12} + \frac{1}{20} a^{11} + \frac{29}{240} a^{10} - \frac{13}{120} a^{9} + \frac{19}{240} a^{8} + \frac{9}{20} a^{7} + \frac{9}{20} a^{6} - \frac{5}{16} a^{5} - \frac{59}{120} a^{4} + \frac{43}{240} a^{3} - \frac{17}{60} a^{2} - \frac{5}{12} a + \frac{103}{240}$, $\frac{1}{24240} a^{14} - \frac{23}{12120} a^{13} - \frac{67}{6060} a^{12} - \frac{659}{24240} a^{11} - \frac{617}{6060} a^{10} + \frac{637}{8080} a^{9} - \frac{187}{4040} a^{8} - \frac{437}{2020} a^{7} - \frac{9707}{24240} a^{6} + \frac{151}{1515} a^{5} - \frac{953}{24240} a^{4} - \frac{699}{4040} a^{3} - \frac{67}{6060} a^{2} - \frac{9641}{24240} a - \frac{5807}{12120}$, $\frac{1}{533280} a^{15} - \frac{7}{533280} a^{14} - \frac{749}{533280} a^{13} + \frac{11}{9696} a^{12} + \frac{10211}{533280} a^{11} + \frac{73}{1111} a^{10} - \frac{377}{177760} a^{9} - \frac{12743}{533280} a^{8} + \frac{94837}{533280} a^{7} - \frac{127697}{533280} a^{6} + \frac{60713}{133320} a^{5} + \frac{51459}{177760} a^{4} + \frac{839}{9696} a^{3} + \frac{54647}{533280} a^{2} - \frac{14603}{177760} a - \frac{34099}{533280}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{103363}{106656} a^{15} + \frac{590837}{106656} a^{14} - \frac{426453}{35552} a^{13} + \frac{79651}{9696} a^{12} + \frac{359957}{35552} a^{11} + \frac{102219}{17776} a^{10} - \frac{2836067}{106656} a^{9} + \frac{2943811}{106656} a^{8} - \frac{9982349}{35552} a^{7} - \frac{4803461}{106656} a^{6} - \frac{729183}{17776} a^{5} - \frac{387933}{35552} a^{4} - \frac{1391}{9696} a^{3} + \frac{1254227}{106656} a^{2} - \frac{371527}{35552} a + \frac{361343}{106656} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22778.0314327 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-3}) \), 4.0.19773.1 x2, 4.2.6591.1 x2, \(\Q(\sqrt{-3}, \sqrt{13})\), 8.0.45743668893.2, 8.0.45743668893.1, 8.0.390971529.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 13.8.7.1 | $x^{8} - 13$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |