Normalized defining polynomial
\( x^{16} + 224 x^{14} - 192 x^{13} + 20314 x^{12} - 35512 x^{11} + 970632 x^{10} - 2489256 x^{9} + 27814397 x^{8} - 82717776 x^{7} + 504053312 x^{6} - 1361814944 x^{5} + 5267824628 x^{4} - 9998030224 x^{3} + 21102481608 x^{2} - 15119234336 x + 13719758722 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20900613426398125371268864579469312=2^{57}\cdot 449^{4}\cdot 1889^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $139.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{13} + \frac{3}{7} a^{12} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{2} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{15} - \frac{1675689101556181205214396903642832786354663265450430799646506757820730}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{14} + \frac{18631577690028334413218091983511900884691293981265714690838732177815927}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{13} - \frac{75996294990462539431457501662232866603196276541000807471161204616732179}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{12} - \frac{71605459853155892728375277105855828917368457604126132790201297190182701}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{11} - \frac{82125950513514977640098857374643763511657936822239505304947407090176580}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{10} + \frac{1222802031115757658671115958445318433077751990641667116890356351963840}{28224049510532400495959459350492709458324126939769003330846985929527433} a^{9} + \frac{9546117615879351817299222271669541131580641936421159563966517170590691}{28224049510532400495959459350492709458324126939769003330846985929527433} a^{8} + \frac{29089119917633018288899959606477074089012792108262446090883623182869130}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{7} - \frac{5815146172159997825457566776033053266348103666246154070179711114602546}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{6} - \frac{74322287751798943721643968199061407720433994521558372941760368941879700}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{5} - \frac{35165014984468294567995259829365365521633049602855890198677886119340553}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{4} + \frac{67915032147048205173359232575989947871035749364283906275352877069823341}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{3} + \frac{73613655870837287382672308433133655190870659127606758782179052837222105}{197568346573726803471716215453448966208268888578383023315928901506692031} a^{2} + \frac{13950869963263990012101627703848583725512654250776191671747771510877945}{197568346573726803471716215453448966208268888578383023315928901506692031} a + \frac{41091323376903818806073721047977312307689443926218314228087299542485808}{197568346573726803471716215453448966208268888578383023315928901506692031}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{85042}$, which has order $1360672$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56271.9156358 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1584 are not computed |
| Character table for t16n1584 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.17 | $x^{8} + 16 x^{5} + 12 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8:C_2$ | $[2, 3, 4, 5]$ |
| 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||