Properties

Label 16.0.20851360000...0000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 5^{12}\cdot 19^{4}$
Root discriminant $13.96$
Ramified primes $2, 5, 19$
Class number $1$
Class group Trivial
Galois group 16T1027

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 14, -30, 59, -76, 92, -104, 125, -120, 68, -18, -9, 6, 2, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 2*x^14 + 6*x^13 - 9*x^12 - 18*x^11 + 68*x^10 - 120*x^9 + 125*x^8 - 104*x^7 + 92*x^6 - 76*x^5 + 59*x^4 - 30*x^3 + 14*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 + 2*x^14 + 6*x^13 - 9*x^12 - 18*x^11 + 68*x^10 - 120*x^9 + 125*x^8 - 104*x^7 + 92*x^6 - 76*x^5 + 59*x^4 - 30*x^3 + 14*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 2 x^{14} + 6 x^{13} - 9 x^{12} - 18 x^{11} + 68 x^{10} - 120 x^{9} + 125 x^{8} - 104 x^{7} + 92 x^{6} - 76 x^{5} + 59 x^{4} - 30 x^{3} + 14 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2085136000000000000=2^{16}\cdot 5^{12}\cdot 19^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{26899596739} a^{15} - \frac{11466787328}{26899596739} a^{14} + \frac{39769979}{26899596739} a^{13} + \frac{2588371045}{26899596739} a^{12} - \frac{1163727648}{26899596739} a^{11} - \frac{7297235770}{26899596739} a^{10} + \frac{10394667138}{26899596739} a^{9} - \frac{5250228877}{26899596739} a^{8} + \frac{890474707}{26899596739} a^{7} - \frac{12085772385}{26899596739} a^{6} - \frac{9585839752}{26899596739} a^{5} + \frac{10388043268}{26899596739} a^{4} - \frac{5025299648}{26899596739} a^{3} - \frac{10251932501}{26899596739} a^{2} - \frac{9224338856}{26899596739} a - \frac{12812454143}{26899596739}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{14262411010}{26899596739} a^{15} - \frac{26607982802}{26899596739} a^{14} + \frac{22081432234}{26899596739} a^{13} + \frac{90850278652}{26899596739} a^{12} - \frac{115769917826}{26899596739} a^{11} - \frac{294744322588}{26899596739} a^{10} + \frac{932233636826}{26899596739} a^{9} - \frac{1507483849128}{26899596739} a^{8} + \frac{1453980494210}{26899596739} a^{7} - \frac{1176209837520}{26899596739} a^{6} + \frac{1148939789238}{26899596739} a^{5} - \frac{928122496261}{26899596739} a^{4} + \frac{653759209046}{26899596739} a^{3} - \frac{297514677476}{26899596739} a^{2} + \frac{157855317820}{26899596739} a - \frac{40446322664}{26899596739} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1845.24015252 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1027:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 576
The 28 conjugacy class representatives for t16n1027
Character table for t16n1027 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.57760000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ R ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.12.9.2$x^{12} - 10 x^{8} + 25 x^{4} - 500$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.6.0.1$x^{6} - x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
19.6.4.2$x^{6} - 19 x^{3} + 722$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$