Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - x^{13} - 8 x^{12} - 46 x^{11} + 93 x^{10} - 78 x^{9} + 80 x^{8} + 271 x^{7} + 434 x^{6} - 866 x^{5} - 47 x^{4} - 776 x^{3} - 960 x^{2} - 512 x + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(208225350937744140625=5^{12}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{41} a^{10} + \frac{2}{41} a^{5} - \frac{3}{41}$, $\frac{1}{41} a^{11} + \frac{2}{41} a^{6} - \frac{3}{41} a$, $\frac{1}{1025} a^{12} + \frac{11}{1025} a^{11} + \frac{1}{1025} a^{10} - \frac{6}{25} a^{8} + \frac{207}{1025} a^{7} + \frac{22}{1025} a^{6} - \frac{162}{1025} a^{5} + \frac{1}{25} a^{4} + \frac{4}{25} a^{3} - \frac{44}{1025} a^{2} - \frac{64}{205} a + \frac{161}{1025}$, $\frac{1}{155800} a^{13} - \frac{29}{77900} a^{12} + \frac{421}{77900} a^{11} - \frac{1569}{155800} a^{10} - \frac{7}{475} a^{9} - \frac{21647}{77900} a^{8} - \frac{53211}{155800} a^{7} - \frac{4563}{15580} a^{6} - \frac{6532}{19475} a^{5} - \frac{173}{760} a^{4} + \frac{4809}{15580} a^{3} - \frac{38617}{77900} a^{2} - \frac{7159}{155800} a - \frac{7873}{19475}$, $\frac{1}{1246400} a^{14} - \frac{1}{623200} a^{13} - \frac{63}{623200} a^{12} - \frac{1537}{1246400} a^{11} + \frac{83}{31160} a^{10} + \frac{13973}{124640} a^{9} + \frac{46649}{249280} a^{8} - \frac{1597}{32800} a^{7} + \frac{25889}{77900} a^{6} + \frac{434639}{1246400} a^{5} + \frac{49253}{124640} a^{4} + \frac{13077}{32800} a^{3} - \frac{537583}{1246400} a^{2} + \frac{72639}{155800} a + \frac{7209}{19475}$, $\frac{1}{49856000} a^{15} - \frac{1}{4985600} a^{14} + \frac{1}{608000} a^{13} + \frac{22383}{49856000} a^{12} - \frac{2339}{389500} a^{11} - \frac{9323}{4985600} a^{10} - \frac{2571827}{49856000} a^{9} + \frac{213789}{608000} a^{8} + \frac{17478}{97375} a^{7} + \frac{1116943}{49856000} a^{6} - \frac{719431}{4985600} a^{5} + \frac{8035687}{24928000} a^{4} + \frac{38521}{1216000} a^{3} - \frac{92129}{3116000} a^{2} + \frac{367003}{779000} a + \frac{23341}{97375}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7}{124640} a^{15} + \frac{21}{249280} a^{14} - \frac{7}{24928} a^{13} + \frac{43}{15580} a^{12} + \frac{7}{249280} a^{11} + \frac{189}{62320} a^{10} - \frac{7}{3280} a^{9} + \frac{3017}{249280} a^{8} - \frac{15179}{124640} a^{7} + \frac{7}{124640} a^{6} - \frac{12453}{249280} a^{5} - \frac{609}{24928} a^{4} - \frac{1099}{15580} a^{3} + \frac{192809}{249280} a^{2} + \frac{336}{3895} a + \frac{896}{3895} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5085.12397787 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |