Normalized defining polynomial
\( x^{16} - 3 x^{15} + 7 x^{14} + 13 x^{13} - 28 x^{12} - 140 x^{11} + 328 x^{10} + 154 x^{9} - 3755 x^{8} - 7864 x^{7} + 20608 x^{6} + 104525 x^{5} + 188102 x^{4} + 187062 x^{3} + 109982 x^{2} + 36288 x + 5281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20723941878730254150390625=5^{12}\cdot 13^{8}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} - \frac{14}{31} a^{13} + \frac{14}{31} a^{12} - \frac{5}{31} a^{11} + \frac{15}{31} a^{10} - \frac{4}{31} a^{9} - \frac{4}{31} a^{8} + \frac{11}{31} a^{7} - \frac{2}{31} a^{6} - \frac{4}{31} a^{5} - \frac{10}{31} a^{4} + \frac{9}{31} a^{3} + \frac{1}{31} a^{2} + \frac{7}{31} a - \frac{13}{31}$, $\frac{1}{79644628792077303036733106602661} a^{15} + \frac{1270067775192385911337808591580}{79644628792077303036733106602661} a^{14} + \frac{19681502718697579268278183223764}{79644628792077303036733106602661} a^{13} - \frac{15921635111546929059003202409105}{79644628792077303036733106602661} a^{12} - \frac{37998397829770394826021410538762}{79644628792077303036733106602661} a^{11} + \frac{36916728279098275852497728078115}{79644628792077303036733106602661} a^{10} - \frac{21437360474335417421295623735222}{79644628792077303036733106602661} a^{9} + \frac{12028842586782507431354153034000}{79644628792077303036733106602661} a^{8} + \frac{24230039829116827085672607329533}{79644628792077303036733106602661} a^{7} + \frac{24157668549665245550486399073196}{79644628792077303036733106602661} a^{6} + \frac{18035566000616715892138435055155}{79644628792077303036733106602661} a^{5} + \frac{39682978420177712067822187935005}{79644628792077303036733106602661} a^{4} - \frac{32276421573800012593241281943138}{79644628792077303036733106602661} a^{3} - \frac{210385764916848961457000376506}{79644628792077303036733106602661} a^{2} - \frac{17583604126391284456250808327724}{79644628792077303036733106602661} a - \frac{19999474945355853990878159759649}{79644628792077303036733106602661}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{115764245889213379625044588674}{79644628792077303036733106602661} a^{15} + \frac{518052317477584858884914437464}{79644628792077303036733106602661} a^{14} - \frac{1538535597844523381243449926538}{79644628792077303036733106602661} a^{13} + \frac{552747219579813896965570962676}{79644628792077303036733106602661} a^{12} + \frac{3141149980897545187089654938900}{79644628792077303036733106602661} a^{11} + \frac{10699731848551427490046840609559}{79644628792077303036733106602661} a^{10} - \frac{54438368029964617549261197916518}{79644628792077303036733106602661} a^{9} + \frac{60729804279186129222630076375630}{79644628792077303036733106602661} a^{8} + \frac{366290156530421313529886147955812}{79644628792077303036733106602661} a^{7} + \frac{325923531602794301597162343931913}{79644628792077303036733106602661} a^{6} - \frac{2950165658294442958741244254792601}{79644628792077303036733106602661} a^{5} - \frac{7685673652663423988976979327870560}{79644628792077303036733106602661} a^{4} - \frac{9420892754402244508247732252185881}{79644628792077303036733106602661} a^{3} - \frac{6740235884903272862806530777822544}{79644628792077303036733106602661} a^{2} - \frac{2990187221457856929909114269922678}{79644628792077303036733106602661} a - \frac{669762634775413466625752360550348}{79644628792077303036733106602661} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 747944.552124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{65}) \), \(\Q(\zeta_{5})\), 4.0.21125.1, \(\Q(\sqrt{5}, \sqrt{13})\), 8.0.446265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 101 | Data not computed | ||||||