Normalized defining polynomial
\( x^{16} - x^{15} + 32 x^{14} - 50 x^{13} + 405 x^{12} - 754 x^{11} + 2716 x^{10} - 4745 x^{9} + 9704 x^{8} - 12185 x^{7} + 12899 x^{6} - 5082 x^{5} - 10935 x^{4} + 17395 x^{3} - 6502 x^{2} - 14598 x + 12401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20723941878730254150390625=5^{12}\cdot 13^{8}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1291} a^{14} + \frac{578}{1291} a^{13} - \frac{207}{1291} a^{12} - \frac{78}{1291} a^{11} - \frac{474}{1291} a^{10} - \frac{33}{1291} a^{9} - \frac{476}{1291} a^{8} + \frac{571}{1291} a^{7} - \frac{315}{1291} a^{6} - \frac{16}{1291} a^{5} - \frac{488}{1291} a^{4} - \frac{266}{1291} a^{3} + \frac{424}{1291} a^{2} + \frac{320}{1291} a - \frac{314}{1291}$, $\frac{1}{90075890583554831894591814731} a^{15} - \frac{29176971099481400494133898}{90075890583554831894591814731} a^{14} + \frac{31246610737513491186351436251}{90075890583554831894591814731} a^{13} + \frac{7839943108320074898680353209}{90075890583554831894591814731} a^{12} - \frac{22774974423800920705044464839}{90075890583554831894591814731} a^{11} - \frac{15392666880135763290248500218}{90075890583554831894591814731} a^{10} - \frac{15661471427895172604391931442}{90075890583554831894591814731} a^{9} - \frac{41991361540168077104581055356}{90075890583554831894591814731} a^{8} + \frac{17830736087343107491275279691}{90075890583554831894591814731} a^{7} - \frac{42995944178918401623453215849}{90075890583554831894591814731} a^{6} + \frac{6257620980469622579932354041}{90075890583554831894591814731} a^{5} - \frac{8125771116799255803841271932}{90075890583554831894591814731} a^{4} + \frac{10867934708271573633939800956}{90075890583554831894591814731} a^{3} + \frac{38641424779048752811654114666}{90075890583554831894591814731} a^{2} + \frac{43429791402315497083229853096}{90075890583554831894591814731} a + \frac{23197180304123880609316688391}{90075890583554831894591814731}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3539245561949033493371}{136272149143048157177899871} a^{15} + \frac{5333378958653388461793}{136272149143048157177899871} a^{14} + \frac{120915608831625268117679}{136272149143048157177899871} a^{13} + \frac{97618647931771672283120}{136272149143048157177899871} a^{12} + \frac{1546572677053332257798318}{136272149143048157177899871} a^{11} + \frac{398669883761793497447120}{136272149143048157177899871} a^{10} + \frac{10264837762071907608013458}{136272149143048157177899871} a^{9} - \frac{914078380268184697394725}{136272149143048157177899871} a^{8} + \frac{40730278370384440750333114}{136272149143048157177899871} a^{7} - \frac{8470702076012721832246014}{136272149143048157177899871} a^{6} + \frac{92856866898669172571982026}{136272149143048157177899871} a^{5} - \frac{16470700573217496565539567}{136272149143048157177899871} a^{4} + \frac{78004526584220637282938814}{136272149143048157177899871} a^{3} - \frac{9671081204120478669051734}{136272149143048157177899871} a^{2} - \frac{5066518556442734882016219}{136272149143048157177899871} a - \frac{23144933778064009838091989}{136272149143048157177899871} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 727465.154558 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2.C_2$ (as 16T317):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4:C_2^2.C_2$ |
| Character table for $C_2^4:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{65}) \), 4.0.21125.1, \(\Q(\zeta_{5})\), \(\Q(\sqrt{5}, \sqrt{13})\), 8.0.446265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |