Normalized defining polynomial
\( x^{16} + 224 x^{14} + 20384 x^{12} + 965888 x^{10} + 25354560 x^{8} + 361417728 x^{6} + 2529924096 x^{4} + 6746464256 x^{2} + 15567303361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2055505143594254982418411202543616=2^{64}\cdot 3^{8}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1824=2^{5}\cdot 3\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1824}(1,·)$, $\chi_{1824}(455,·)$, $\chi_{1824}(457,·)$, $\chi_{1824}(911,·)$, $\chi_{1824}(913,·)$, $\chi_{1824}(1367,·)$, $\chi_{1824}(1369,·)$, $\chi_{1824}(1823,·)$, $\chi_{1824}(227,·)$, $\chi_{1824}(229,·)$, $\chi_{1824}(683,·)$, $\chi_{1824}(685,·)$, $\chi_{1824}(1139,·)$, $\chi_{1824}(1141,·)$, $\chi_{1824}(1595,·)$, $\chi_{1824}(1597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13021} a^{8} + \frac{112}{13021} a^{6} + \frac{3920}{13021} a^{4} + \frac{4841}{13021} a^{2} - \frac{1294}{13021}$, $\frac{1}{1624617149} a^{9} + \frac{113165623}{1624617149} a^{7} - \frac{282096045}{1624617149} a^{5} + \frac{224330629}{1624617149} a^{3} - \frac{54533242}{1624617149} a$, $\frac{1}{1624617149} a^{10} + \frac{140}{1624617149} a^{8} + \frac{40307051}{1624617149} a^{6} + \frac{136118946}{1624617149} a^{4} - \frac{392657232}{1624617149} a^{2} + \frac{1768}{13021}$, $\frac{1}{1624617149} a^{11} + \frac{443291321}{1624617149} a^{7} + \frac{638753670}{1624617149} a^{5} + \frac{693397688}{1624617149} a^{3} - \frac{267840273}{1624617149} a$, $\frac{1}{1624617149} a^{12} - \frac{12936}{1624617149} a^{8} - \frac{272808644}{1624617149} a^{6} - \frac{343557471}{1624617149} a^{4} - \frac{184494581}{1624617149} a^{2} + \frac{1169}{13021}$, $\frac{1}{1624617149} a^{13} - \frac{142360765}{1624617149} a^{7} - \frac{22340653}{56021281} a^{5} + \frac{190294049}{1624617149} a^{3} - \frac{212320885}{1624617149} a$, $\frac{1}{1624617149} a^{14} + \frac{664}{1624617149} a^{8} + \frac{675046770}{1624617149} a^{6} - \frac{621203527}{1624617149} a^{4} + \frac{121685728}{1624617149} a^{2} - \frac{5081}{13021}$, $\frac{1}{1624617149} a^{15} + \frac{265461952}{1624617149} a^{7} - \frac{140401782}{1624617149} a^{5} + \frac{630925780}{1624617149} a^{3} - \frac{165455879}{1624617149} a$
Class group and class number
$C_{2}\times C_{539552}$, which has order $1079104$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-114}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{2}, \sqrt{-57})\), \(\Q(\zeta_{16})^+\), 4.0.6653952.2, 8.0.177100308873216.55, 8.0.22668839535771648.22, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||