Normalized defining polynomial
\( x^{16} - 7 x^{15} + 22 x^{14} - 182 x^{13} + 2850 x^{12} - 16562 x^{11} + 47520 x^{10} + \cdots + 337333286 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(205433557246404340023920345190400000000\)
\(\medspace = 2^{18}\cdot 5^{8}\cdot 13^{8}\cdot 199^{8}\)
|
| |
| Root discriminant: | \(248.05\) |
| |
| Galois root discriminant: | $2^{45/28}5^{1/2}13^{1/2}199^{2/3}\approx 837.1891731578766$ | ||
| Ramified primes: |
\(2\), \(5\), \(13\), \(199\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10\cdots 22}a^{15}+\frac{23\cdots 76}{52\cdots 11}a^{14}+\frac{19\cdots 33}{52\cdots 11}a^{13}+\frac{23\cdots 22}{52\cdots 11}a^{12}-\frac{36\cdots 22}{74\cdots 73}a^{11}-\frac{31\cdots 49}{74\cdots 73}a^{10}-\frac{13\cdots 69}{52\cdots 11}a^{9}-\frac{20\cdots 34}{52\cdots 11}a^{8}+\frac{10\cdots 21}{10\cdots 22}a^{7}-\frac{13\cdots 37}{74\cdots 73}a^{6}-\frac{33\cdots 48}{52\cdots 11}a^{5}-\frac{12\cdots 95}{52\cdots 11}a^{4}+\frac{17\cdots 03}{52\cdots 11}a^{3}-\frac{12\cdots 53}{74\cdots 73}a^{2}-\frac{66\cdots 25}{52\cdots 11}a-\frac{57\cdots 02}{52\cdots 11}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{41\cdots 31}{56\cdots 67}a^{15}-\frac{70\cdots 98}{56\cdots 67}a^{14}+\frac{32\cdots 44}{56\cdots 67}a^{13}-\frac{12\cdots 30}{56\cdots 67}a^{12}+\frac{18\cdots 92}{56\cdots 67}a^{11}-\frac{17\cdots 30}{56\cdots 67}a^{10}+\frac{71\cdots 02}{56\cdots 67}a^{9}-\frac{14\cdots 98}{56\cdots 67}a^{8}+\frac{55\cdots 73}{56\cdots 67}a^{7}-\frac{42\cdots 90}{56\cdots 67}a^{6}+\frac{71\cdots 42}{56\cdots 67}a^{5}+\frac{36\cdots 20}{56\cdots 67}a^{4}-\frac{18\cdots 46}{56\cdots 67}a^{3}+\frac{11\cdots 58}{56\cdots 67}a^{2}+\frac{25\cdots 96}{56\cdots 67}a-\frac{32\cdots 27}{56\cdots 67}$, $\frac{22\cdots 36}{52\cdots 11}a^{15}-\frac{15\cdots 70}{52\cdots 11}a^{14}+\frac{44\cdots 88}{52\cdots 11}a^{13}-\frac{38\cdots 55}{52\cdots 11}a^{12}+\frac{89\cdots 75}{74\cdots 73}a^{11}-\frac{51\cdots 44}{74\cdots 73}a^{10}+\frac{93\cdots 80}{52\cdots 11}a^{9}-\frac{19\cdots 54}{52\cdots 11}a^{8}+\frac{17\cdots 26}{52\cdots 11}a^{7}-\frac{89\cdots 22}{74\cdots 73}a^{6}-\frac{40\cdots 92}{52\cdots 11}a^{5}+\frac{95\cdots 92}{52\cdots 11}a^{4}-\frac{13\cdots 19}{52\cdots 11}a^{3}-\frac{11\cdots 03}{74\cdots 73}a^{2}+\frac{62\cdots 98}{52\cdots 11}a-\frac{78\cdots 99}{52\cdots 11}$, $\frac{51\cdots 19}{52\cdots 11}a^{15}-\frac{11\cdots 29}{52\cdots 11}a^{14}-\frac{67\cdots 92}{52\cdots 11}a^{13}-\frac{10\cdots 32}{52\cdots 11}a^{12}+\frac{14\cdots 22}{74\cdots 73}a^{11}-\frac{34\cdots 06}{74\cdots 73}a^{10}+\frac{41\cdots 34}{52\cdots 11}a^{9}-\frac{39\cdots 49}{52\cdots 11}a^{8}+\frac{24\cdots 33}{52\cdots 11}a^{7}+\frac{31\cdots 77}{74\cdots 73}a^{6}-\frac{17\cdots 74}{52\cdots 11}a^{5}+\frac{44\cdots 48}{52\cdots 11}a^{4}-\frac{13\cdots 40}{52\cdots 11}a^{3}-\frac{16\cdots 29}{74\cdots 73}a^{2}+\frac{21\cdots 08}{52\cdots 11}a-\frac{13\cdots 07}{52\cdots 11}$, $\frac{13\cdots 07}{52\cdots 11}a^{15}-\frac{23\cdots 02}{52\cdots 11}a^{14}-\frac{63\cdots 76}{52\cdots 11}a^{13}-\frac{22\cdots 85}{52\cdots 11}a^{12}+\frac{98\cdots 03}{74\cdots 73}a^{11}-\frac{52\cdots 99}{74\cdots 73}a^{10}+\frac{27\cdots 24}{52\cdots 11}a^{9}-\frac{17\cdots 79}{52\cdots 11}a^{8}+\frac{19\cdots 93}{52\cdots 11}a^{7}-\frac{89\cdots 21}{74\cdots 73}a^{6}-\frac{23\cdots 20}{52\cdots 11}a^{5}+\frac{53\cdots 87}{52\cdots 11}a^{4}-\frac{75\cdots 89}{52\cdots 11}a^{3}-\frac{26\cdots 79}{74\cdots 73}a^{2}+\frac{36\cdots 00}{52\cdots 11}a-\frac{31\cdots 45}{52\cdots 11}$, $\frac{89\cdots 54}{52\cdots 11}a^{15}-\frac{55\cdots 84}{52\cdots 11}a^{14}+\frac{14\cdots 41}{52\cdots 11}a^{13}-\frac{14\cdots 98}{52\cdots 11}a^{12}+\frac{34\cdots 55}{74\cdots 73}a^{11}-\frac{18\cdots 89}{74\cdots 73}a^{10}+\frac{30\cdots 85}{52\cdots 11}a^{9}-\frac{68\cdots 90}{52\cdots 11}a^{8}+\frac{69\cdots 58}{52\cdots 11}a^{7}-\frac{29\cdots 42}{74\cdots 73}a^{6}-\frac{23\cdots 88}{52\cdots 11}a^{5}+\frac{34\cdots 46}{52\cdots 11}a^{4}-\frac{32\cdots 95}{52\cdots 11}a^{3}-\frac{31\cdots 41}{74\cdots 73}a^{2}+\frac{24\cdots 10}{52\cdots 11}a-\frac{20\cdots 03}{52\cdots 11}$, $\frac{50\cdots 05}{52\cdots 11}a^{15}-\frac{58\cdots 26}{52\cdots 11}a^{14}-\frac{19\cdots 44}{52\cdots 11}a^{13}-\frac{88\cdots 81}{52\cdots 11}a^{12}+\frac{27\cdots 92}{74\cdots 73}a^{11}-\frac{13\cdots 94}{74\cdots 73}a^{10}+\frac{74\cdots 94}{52\cdots 11}a^{9}-\frac{52\cdots 83}{52\cdots 11}a^{8}+\frac{53\cdots 21}{52\cdots 11}a^{7}-\frac{19\cdots 63}{74\cdots 73}a^{6}-\frac{61\cdots 94}{52\cdots 11}a^{5}+\frac{13\cdots 36}{52\cdots 11}a^{4}-\frac{17\cdots 54}{52\cdots 11}a^{3}-\frac{67\cdots 65}{74\cdots 73}a^{2}+\frac{91\cdots 50}{52\cdots 11}a-\frac{78\cdots 19}{52\cdots 11}$, $\frac{25\cdots 41}{52\cdots 11}a^{15}-\frac{17\cdots 76}{52\cdots 11}a^{14}+\frac{49\cdots 46}{52\cdots 11}a^{13}-\frac{43\cdots 25}{52\cdots 11}a^{12}+\frac{10\cdots 53}{74\cdots 73}a^{11}-\frac{56\cdots 55}{74\cdots 73}a^{10}+\frac{10\cdots 30}{52\cdots 11}a^{9}-\frac{22\cdots 22}{52\cdots 11}a^{8}+\frac{20\cdots 54}{52\cdots 11}a^{7}-\frac{97\cdots 61}{74\cdots 73}a^{6}-\frac{43\cdots 24}{52\cdots 11}a^{5}+\frac{10\cdots 04}{52\cdots 11}a^{4}-\frac{14\cdots 94}{52\cdots 11}a^{3}-\frac{82\cdots 47}{74\cdots 73}a^{2}+\frac{71\cdots 60}{52\cdots 11}a-\frac{92\cdots 33}{52\cdots 11}$
|
| |
| Regulator: | \( 4844961142290 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4844961142290 \cdot 8}{2\cdot\sqrt{205433557246404340023920345190400000000}}\cr\approx \mathstrut & 3.28438109207257 \end{aligned}\] (assuming GRH)
Galois group
$C_2^3:F_8:C_6$ (as 16T1501):
| A solvable group of order 2688 |
| The 20 conjugacy class representatives for $C_2^3:F_8:C_6$ |
| Character table for $C_2^3:F_8:C_6$ |
Intermediate fields
| \(\Q(\sqrt{65}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 28 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.3.0.1}{3} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | R | ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.1.7.6a1.1 | $x^{7} + 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $$[\ ]_{7}^{3}$$ | |
| 2.1.8.12a1.1 | $x^{8} + 2 x^{5} + 2$ | $8$ | $1$ | $12$ | $C_2^3:(C_7: C_3)$ | $$[\frac{12}{7}, \frac{12}{7}, \frac{12}{7}]_{7}^{3}$$ | |
|
\(5\)
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.7.2.7a1.1 | $x^{14} + 6 x^{8} + 6 x^{7} + 9 x^{2} + 23 x + 9$ | $2$ | $7$ | $7$ | $C_{14}$ | $$[\ ]_{2}^{7}$$ | |
|
\(13\)
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 13.6.2.6a1.2 | $x^{12} + 20 x^{9} + 22 x^{8} + 22 x^{7} + 104 x^{6} + 220 x^{5} + 341 x^{4} + 282 x^{3} + 165 x^{2} + 44 x + 17$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(199\)
| $\Q_{199}$ | $x + 196$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{199}$ | $x + 196$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 199.2.1.0a1.1 | $x^{2} + 193 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 199.1.3.2a1.1 | $x^{3} + 199$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 199.1.3.2a1.1 | $x^{3} + 199$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 199.2.3.4a1.2 | $x^{6} + 579 x^{5} + 111756 x^{4} + 7192531 x^{3} + 335268 x^{2} + 5211 x + 226$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ |