Normalized defining polynomial
\( x^{16} - 4 x^{15} + 41 x^{14} - 126 x^{13} + 666 x^{12} - 1676 x^{11} + 5845 x^{10} - 11821 x^{9} + 29440 x^{8} - 44509 x^{7} + 82259 x^{6} - 80505 x^{5} + 114255 x^{4} - 45695 x^{3} + 71142 x^{2} + 14611 x + 15451 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2039671816037671133025841=7^{8}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{10} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{19320} a^{12} - \frac{1}{6440} a^{11} - \frac{2809}{19320} a^{10} + \frac{2153}{19320} a^{9} - \frac{353}{3220} a^{8} - \frac{4631}{19320} a^{7} - \frac{4339}{9660} a^{6} + \frac{1609}{3864} a^{5} + \frac{109}{230} a^{4} - \frac{267}{1288} a^{3} - \frac{727}{6440} a^{2} - \frac{199}{420} a + \frac{7109}{19320}$, $\frac{1}{19320} a^{13} - \frac{443}{9660} a^{11} - \frac{239}{9660} a^{10} + \frac{803}{6440} a^{9} + \frac{2539}{19320} a^{8} - \frac{5183}{19320} a^{7} + \frac{7127}{19320} a^{6} - \frac{1783}{6440} a^{5} - \frac{1839}{6440} a^{4} + \frac{42}{115} a^{3} + \frac{1111}{3864} a^{2} - \frac{1033}{19320} a + \frac{1313}{6440}$, $\frac{1}{19320} a^{14} + \frac{13}{345} a^{11} - \frac{259}{2760} a^{10} + \frac{153}{920} a^{9} + \frac{37}{19320} a^{8} - \frac{1321}{6440} a^{7} + \frac{197}{552} a^{6} + \frac{419}{2760} a^{5} + \frac{29}{115} a^{4} + \frac{887}{2760} a^{3} - \frac{1439}{3864} a^{2} - \frac{353}{3864} a + \frac{2059}{9660}$, $\frac{1}{127289711280788981400} a^{15} + \frac{52176316012013}{9092122234342070100} a^{14} + \frac{581788782170521}{42429903760262993800} a^{13} + \frac{93746002769863}{5303737970032874225} a^{12} + \frac{6339728799095085973}{127289711280788981400} a^{11} - \frac{133529741879778037}{2157452733572694600} a^{10} + \frac{2299019500254187527}{21214951880131496900} a^{9} + \frac{77671158256790396}{2273030558585517525} a^{8} - \frac{7616700353294993551}{31822427820197245350} a^{7} - \frac{2962782790765623781}{15911213910098622675} a^{6} - \frac{45154961406328892729}{127289711280788981400} a^{5} - \frac{31692827929135597997}{63644855640394490700} a^{4} - \frac{50222066157921661529}{127289711280788981400} a^{3} + \frac{26262151117432063943}{63644855640394490700} a^{2} - \frac{8738622874310743329}{42429903760262993800} a - \frac{18524244058930802231}{127289711280788981400}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 419388.064919 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |