Normalized defining polynomial
\( x^{16} - 5 x^{15} + 58 x^{14} - 45 x^{13} + 4163 x^{12} - 2040 x^{11} + 57631 x^{10} + 894085 x^{9} + 1684350 x^{8} + 16307885 x^{7} + 68749501 x^{6} + 369834880 x^{5} + 1907077408 x^{4} + 5468731520 x^{3} + 13905624448 x^{2} + 12151056320 x + 9814341056 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203962831252212947906041415777587890625=5^{14}\cdot 109^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $247.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{9} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{1}{20} a^{5} - \frac{1}{5} a^{4} + \frac{3}{10} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{80} a^{12} - \frac{1}{40} a^{10} + \frac{1}{16} a^{9} + \frac{1}{10} a^{8} + \frac{3}{20} a^{7} + \frac{11}{80} a^{6} - \frac{1}{20} a^{5} - \frac{1}{8} a^{4} - \frac{9}{80} a^{3} - \frac{1}{4} a^{2} + \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{160} a^{13} - \frac{1}{80} a^{11} - \frac{3}{32} a^{10} + \frac{1}{20} a^{9} + \frac{3}{40} a^{8} + \frac{11}{160} a^{7} + \frac{9}{40} a^{6} + \frac{3}{16} a^{5} + \frac{11}{160} a^{4} + \frac{1}{8} a^{3} - \frac{1}{20} a^{2} - \frac{1}{4} a$, $\frac{1}{23200} a^{14} - \frac{1}{1450} a^{13} - \frac{1}{464} a^{12} + \frac{409}{23200} a^{11} - \frac{297}{2900} a^{10} - \frac{137}{1160} a^{9} + \frac{3}{160} a^{8} - \frac{147}{1160} a^{7} + \frac{79}{464} a^{6} + \frac{199}{4640} a^{5} + \frac{89}{5800} a^{4} - \frac{1277}{2900} a^{3} + \frac{101}{290} a^{2} + \frac{309}{1450} a + \frac{297}{725}$, $\frac{1}{225666443161685260745490619040195360510393644090094753537600} a^{15} + \frac{211092462764004965975487897452627416405100659195251593}{13274496656569721220322977590599727088846684946476161972800} a^{14} - \frac{202465297478927435945246342993248914956636106889740475661}{112833221580842630372745309520097680255196822045047376768800} a^{13} - \frac{1225148713211848032075835985497812066929942064215760936181}{225666443161685260745490619040195360510393644090094753537600} a^{12} + \frac{2127718501357054223259992202935112872423467625880150124897}{225666443161685260745490619040195360510393644090094753537600} a^{11} + \frac{3833007783159821331515002075563787332046695619473568924467}{56416610790421315186372654760048840127598411022523688384400} a^{10} + \frac{712847416677808521605739717876456988832229899404455853011}{9026657726467410429819624761607814420415745763603790141504} a^{9} + \frac{4286493049672474305546738849946204561922457914694585273979}{45133288632337052149098123808039072102078728818018950707520} a^{8} + \frac{892414216971783100129841631287579847847273503019810008077}{4513328863233705214909812380803907210207872881801895070752} a^{7} + \frac{5517326296828292277339701222857080959490944944375079484281}{45133288632337052149098123808039072102078728818018950707520} a^{6} + \frac{13887285538684330670164361760886860794634572284677895219591}{225666443161685260745490619040195360510393644090094753537600} a^{5} + \frac{664186783288073942593160933649844306291293508561526501417}{3318624164142430305080744397649931772211671236619040493200} a^{4} - \frac{1123835336254639075771958419003416406808157461035999265209}{3318624164142430305080744397649931772211671236619040493200} a^{3} + \frac{2920389489954067054918215275852407053411025356252455775403}{28208305395210657593186327380024420063799205511261844192200} a^{2} + \frac{46591797859214766831259183706495590806788893811201094063}{190596658075747686440448157973137973404048685886904352650} a - \frac{52372667425634945649145217151635727709927012026094222837}{542467411446358799868967834231238847380753952139650849850}$
Class group and class number
$C_{2}\times C_{366}\times C_{732}$, which has order $535824$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 61163737.6555 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $109$ | 109.8.7.1 | $x^{8} - 109$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 109.8.7.1 | $x^{8} - 109$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |