Normalized defining polynomial
\( x^{16} + 8 x^{14} - 4 x^{13} + 77 x^{12} - 224 x^{11} + 816 x^{10} - 2152 x^{9} + 5580 x^{8} - 10592 x^{7} + 18568 x^{6} - 26792 x^{5} + 32902 x^{4} - 31104 x^{3} + 21608 x^{2} - 8692 x + 1681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203928109056000000000000=2^{32}\cdot 3^{4}\cdot 5^{12}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{140015152609448601811431398253} a^{15} - \frac{320597288675640027568101992}{3415003722181673214912960933} a^{14} + \frac{4086458019589446116770190447}{140015152609448601811431398253} a^{13} - \frac{2960709655344995775245805362}{140015152609448601811431398253} a^{12} - \frac{49863498597931381144451001412}{140015152609448601811431398253} a^{11} + \frac{60352005186207799544437992749}{140015152609448601811431398253} a^{10} - \frac{24821849026065474145794239081}{140015152609448601811431398253} a^{9} - \frac{11389231656334183264796641502}{140015152609448601811431398253} a^{8} + \frac{6257837322062322921320525647}{140015152609448601811431398253} a^{7} + \frac{11685295143281911780613612486}{140015152609448601811431398253} a^{6} - \frac{21680996085514680849776290019}{140015152609448601811431398253} a^{5} - \frac{40377713905502662875827325310}{140015152609448601811431398253} a^{4} - \frac{53975431122421805231338821355}{140015152609448601811431398253} a^{3} - \frac{13839038362939799439301777328}{46671717536482867270477132751} a^{2} - \frac{31372467271178105018182260962}{140015152609448601811431398253} a - \frac{1187495445375341889741187843}{3415003722181673214912960933}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{38357752525953503147132288}{46671717536482867270477132751} a^{15} - \frac{312331514840991465465160}{1138334574060557738304320311} a^{14} - \frac{921573156607523171637817348}{140015152609448601811431398253} a^{13} + \frac{51206173083362387403265151}{46671717536482867270477132751} a^{12} - \frac{8753337759222014902286791264}{140015152609448601811431398253} a^{11} + \frac{22719808759441368163468810288}{140015152609448601811431398253} a^{10} - \frac{28590428530040730788491034536}{46671717536482867270477132751} a^{9} + \frac{71984627462971259713902655738}{46671717536482867270477132751} a^{8} - \frac{563427103859841920045045001568}{140015152609448601811431398253} a^{7} + \frac{1008540931087220968300728269896}{140015152609448601811431398253} a^{6} - \frac{1750211427449793267295784360792}{140015152609448601811431398253} a^{5} + \frac{2404746841219914943183165400962}{140015152609448601811431398253} a^{4} - \frac{2850050003492886120258524252416}{140015152609448601811431398253} a^{3} + \frac{2360452938795113637166981663016}{140015152609448601811431398253} a^{2} - \frac{1490124694861208251018926256100}{140015152609448601811431398253} a + \frac{8504553043592800439317958416}{3415003722181673214912960933} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36969.9190932 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:(C_2\times C_4)$ (as 16T68):
| A solvable group of order 64 |
| The 34 conjugacy class representatives for $C_2^3:(C_2\times C_4)$ |
| Character table for $C_2^3:(C_2\times C_4)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.18063360000.1, 8.0.451584000000.15, 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |