Normalized defining polynomial
\( x^{16} + 60 x^{14} + 58 x^{12} - 12672 x^{10} - 42617 x^{8} + 535839 x^{6} + 3647932 x^{4} + 7455375 x^{2} + 4879681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20297795652530455918821504664845058249=37^{14}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $214.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{14} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{3}{7} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{3}{7} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{6} - \frac{1}{2} a^{5} + \frac{3}{7} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{3}{7}$, $\frac{1}{14} a^{11} - \frac{1}{14} a^{7} - \frac{1}{14} a^{6} + \frac{3}{7} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{686} a^{12} + \frac{1}{49} a^{10} - \frac{1}{98} a^{8} - \frac{1}{14} a^{7} - \frac{15}{343} a^{6} - \frac{1}{2} a^{5} + \frac{5}{98} a^{4} + \frac{11}{49} a^{2} - \frac{3}{7} a + \frac{88}{343}$, $\frac{1}{32242} a^{13} + \frac{163}{4606} a^{11} + \frac{31}{2303} a^{9} - \frac{1157}{32242} a^{7} - \frac{1107}{2303} a^{5} - \frac{1}{2} a^{4} - \frac{437}{2303} a^{3} - \frac{1}{2} a^{2} + \frac{4596}{16121} a - \frac{1}{2}$, $\frac{1}{9557213219086246} a^{14} - \frac{140455996938}{682658087077589} a^{12} - \frac{20259170988249}{682658087077589} a^{10} - \frac{156195601556919}{4778606609543123} a^{8} - \frac{1}{14} a^{7} + \frac{23768544515909}{682658087077589} a^{6} + \frac{351081091268741}{1365316174155178} a^{4} - \frac{1}{2} a^{3} - \frac{799860132935307}{4778606609543123} a^{2} + \frac{1}{14} a - \frac{106125684929}{309034896821}$, $\frac{1}{449189021297053562} a^{15} - \frac{140455996938}{32084930092646683} a^{13} - \frac{138040925844725}{64169860185293366} a^{11} - \frac{16013527205898385}{449189021297053562} a^{9} - \frac{3560798514092581}{64169860185293366} a^{7} - \frac{1}{14} a^{6} + \frac{6368224621266785}{32084930092646683} a^{5} - \frac{52681874750832071}{224594510648526781} a^{3} - \frac{5006536191662}{14524640150587} a + \frac{1}{14}$
Class group and class number
$C_{114}$, which has order $114$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51875715919.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $83$ | 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |