Normalized defining polynomial
\( x^{16} - 2 x^{15} - 26 x^{14} - 247 x^{13} + 2357 x^{12} - 25713 x^{11} + 160951 x^{10} - 425048 x^{9} + 11589258 x^{8} - 97134971 x^{7} + 48261497 x^{6} + 1424825846 x^{5} + 1551213890 x^{4} - 39285105450 x^{3} + 118568037753 x^{2} - 144221692018 x + 64667028003 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20273287048130392461673121562633432041=23^{12}\cdot 41^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $214.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{41} a^{12} + \frac{14}{41} a^{11} + \frac{20}{41} a^{10} + \frac{10}{41} a^{9} - \frac{11}{41} a^{8} - \frac{16}{41} a^{7} - \frac{12}{41} a^{6} - \frac{15}{41} a^{5} - \frac{6}{41} a^{4} + \frac{5}{41} a^{3} - \frac{2}{41} a^{2} - \frac{16}{41} a + \frac{10}{41}$, $\frac{1}{123} a^{13} - \frac{1}{123} a^{12} - \frac{26}{123} a^{11} - \frac{44}{123} a^{10} + \frac{44}{123} a^{9} + \frac{26}{123} a^{8} - \frac{59}{123} a^{7} - \frac{40}{123} a^{6} + \frac{55}{123} a^{5} + \frac{18}{41} a^{4} + \frac{46}{123} a^{3} + \frac{14}{123} a^{2} - \frac{37}{123} a - \frac{9}{41}$, $\frac{1}{2829} a^{14} - \frac{9}{943} a^{12} - \frac{439}{2829} a^{11} + \frac{10}{23} a^{10} + \frac{439}{2829} a^{9} - \frac{11}{943} a^{8} - \frac{33}{943} a^{7} - \frac{118}{943} a^{6} - \frac{1244}{2829} a^{5} - \frac{1376}{2829} a^{4} - \frac{21}{943} a^{3} - \frac{1253}{2829} a^{2} - \frac{1294}{2829} a + \frac{32}{943}$, $\frac{1}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{15} + \frac{459622877843847506602901586070426692672283399522949745581988532312208}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{14} + \frac{2019824372017133988798285799891694022863830827636374798898808789407559}{2979894628035039554210021857379443173969960831101874365303181752855302569} a^{13} + \frac{306577653214690579519359578402508675168260401277653021175580683513242745}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{12} + \frac{3687269727992438976341865126478083211365475563444317845459907211417792625}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{11} + \frac{7708308941743314345115226495513085480866975008769116864520572499651858842}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{10} + \frac{11723190706322636874079550884100191842920213428096310768619949603216749905}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{9} - \frac{2843374688912204017255939019568936043879358095165690085785384287647081486}{8939683884105118662630065572138329521909882493305623095909545258565907707} a^{8} + \frac{2568003275926205932804500595731156552479266515032868805040206933714338632}{8939683884105118662630065572138329521909882493305623095909545258565907707} a^{7} - \frac{1307213935902099620987870669922155094835165963120612528395911968710889988}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{6} + \frac{3273897349592077417879564689868636064755958782327330709084032729306763041}{8939683884105118662630065572138329521909882493305623095909545258565907707} a^{5} - \frac{5484748372753082439241777511501002105276665052003726677687768842448943870}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{4} - \frac{7929030782899412704117960718415215488511686021936846036855301052561302642}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{3} + \frac{6136841710717014951066242356445208503348144341458090613538297614822020118}{26819051652315355987890196716414988565729647479916869287728635775697723121} a^{2} + \frac{6932499056370812968426767880404571239902074530591062938895933799469656730}{26819051652315355987890196716414988565729647479916869287728635775697723121} a - \frac{3387120036579100652638804171580210569175480031458615637136836640892012282}{8939683884105118662630065572138329521909882493305623095909545258565907707}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{12}$, which has order $384$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10710950383.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.21689.1, 8.0.32421315144041.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||